國立中央大學八十六學年度䡋學生入學試題卷
系 三种級 紏目：統計楽
其》政 第

Instructions：Answer the following questions．Make and state your own assumptions for questions where the information is not sufficient for you to solve them．For example，if you weed the corresponding p －value of a normally distributed random variable evaluated at 2.5 ，you may indicate the value as，for example， $\operatorname{Pr}(x \geq 2.5)$ ， where $x \sim \mathcal{N}(0,1)$ ．

1．（ 15 points）Comment the statement：＂T＇wo mutually exclusive events may not be independent．＂You may draw some diagrams to explain your answer．

2．（20 points）A bus starts with 6 people and stops at 10 different stops．Assuming that passengers are equally likely to depart（that is，get off）at any stop，find the probability that no two passengers leave at the same bus stop．That is，find the probability that at each stop at most only one passenger gets off the bus．

3．（ 25 points）A random variable x has an exponential probability probability distribution with density fanction given as：

$$
f(x)=c e^{-25 x} \quad x \leq 0
$$

where c is an unknown constant．
（a）（10 points）Find the value of c so that $f(x)$ is a pdf．
（b）（ 5 points）Find the mean μ and standard deviation σ of x ．
（c）（ 10 points）Find the probability that x will fall within $(\mu-2 \sigma, \mu+2 \sigma)$ ．
4．（40 points）Prom Statistics course（s），we learned the following： Let x_{1}, \ldots, x_{N} be the outcomes of a random variable x with probabilities $p\left(x_{1}\right), \ldots, p\left(x_{N}\right)$ ， respectively．Then the mean and variance of x are：

$$
\begin{align*}
\mu & =\sum_{i=1}^{N} x_{i} p\left(x_{i}\right) \tag{1}\\
\sigma^{2} & =\sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2} p\left(x_{i}\right) \tag{2}
\end{align*}
$$

When $p\left(x_{i}\right)=\frac{1}{N}, \forall i=1, \ldots, N,(1)$ and（2）arc：

$$
\begin{align*}
\mu & =\frac{1}{N} \sum_{i=1}^{N} x_{i} \tag{3}\\
\sigma^{2} & =\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2} \tag{4}
\end{align*}
$$

We also learned that if $\left(x_{1}, \ldots, x_{N}\right)$ represents an iid random sample of x ，then filoe estimates of men and variance are：

$$
\begin{align*}
& \hat{\mu}=\frac{1}{N} \sum_{i=1}^{N} r_{i} \tag{5}\\
& \hat{\sigma}^{2}-\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\hat{\mu}\right)^{2} \tag{6}
\end{align*}
$$

（a）（5 points）Why do $p\left(x_{i}\right)$＇s appoat in（1）and（2），but not in（5）ans（6）？
（b）（ 10 points）Prove that \hat{t} is unbiased．
（c）（10 points）When $p\left(x_{i}\right) \cdots \frac{1}{N}, \forall i=1, \ldots, N$ ，then（3）and（5）look the same．So，do we have to assume in（5）and（6）that，the sample $\left(x_{1}, \ldots, x_{N}\right)$ is drawn from a distribution that assigns equal probability to each of the possible out comes？
（d）（15 points）In（fi），the smon of splames is divided ty $N-1$ ，but in（1）the stru of squares is divided by N ．A stabishicion says that，in（1），we know 1．We pophtalion，so the variance is mblatased by divedime fine sum of squares by N ．Bul in（ 6 ），the popufation is unknown，so one has to divide the sum of sgutares by $N-1$ to get an mbinsed estimate．A liso，he says that，＂as long as the sample size is larger than the number of possible outcones（that is， the population size），then one can make inferenees about the paramters of the rambon varialle．＂Is be correct？What do you think about his shats：atent？Auything wrong？Phase comment and coplain．

