類組:物理類 科目:應用數學(2001)

共_3_頁第_1_頁

計算題應詳列計算過程,無計算過程者不予計分

1. Fourier transform of a function f(x) is defined by

$$F(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-i\xi x} dx.$$

In what follows, you can use the formula

$$\delta(\xi) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i\xi x} dx,$$

where $\delta(\xi)$ is the Dirac delta function.

(1)(申論題 5%) Let the Fourier transform of xf(x) be $G(\xi)$, namely $G(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} xf(x)e^{-i\xi x} dx$.

Prove
$$G(\xi) = -i \frac{d}{d\xi} F(\xi)$$
.

- (2) (計算題 5%) Obtain the Fourier transform of f(x) = x.
- (3) (申論題 10%) Prove that the inverse Fourier transform of $F(\xi)$ is equal to f(x).
- 2. Solve the following differential equations.

(1) (計算題 5%)
$$\frac{d}{dx}f(x) = -\frac{x}{f(x)}$$

(2) (計算題 10%)
$$\frac{d}{dx}f(x) + 9f(x) = e^{-x}$$
.

(3) (計算題 10%)
$$\frac{d}{dx}f(x) = x^2f(x)$$
.

[Hint: Assume $f(x) = \sum_{n=0}^{\infty} b_n x^{n+\lambda}$ $(b_0 \neq 0)$, and find b_n and λ . After that prove $f(x) = b_0 \exp(x^3/3)$.]

類組:物理類 科目:應用數學(2001)

共 3 頁 第 2 頁

- 3. Find the extrema (local maxima or minima) of the following functions or functionals.
 - (1) (計算題 5%) $I(x) = x^3 + 9x^2 + 24x$.
 - (2) (計算題 5%) I(x, y, z) = xyz, with constraints $x^2 + y^2 + z^2 = 1$ and x, y, z > 0.
 - (3) (計算題 10%) Using the Euler-Lagrange equation, find the function f(x) that achieves an extremum of a functional $I[f(\cdot)] = \int_2^5 \sqrt{1 + \left(\frac{df}{dx}\right)^2} dx$, with boundary conditions f(2) = 3 and f(5) = 9.
 - (4) (申論題 10%) Obtain the differential equation of f(x) that achieves extremum of a functional $I[f(\cdot)] = \int_a^b L\left(f, \frac{df}{dx}, \frac{d^2f}{dx^2}\right) dx$. Here we have a boundary conditions given by $f(a) = f_a$, $f(b) = f_b$, $f'(a) = f'_a$, $f'(b) = f'_b$.

台灣聯合大學系統 110 學年度碩士班招生考試試題

類組:物理類 科目:應用數學(2001)

共 3 頁 第 3 頁

4. Let \hat{A} be a square matrix, and \vec{a} and \vec{b} are vectors. \vec{a} and λ are eigen vector and eigen value of matrix \hat{A} , when the following equation is satisfied.

$$\hat{A}\vec{a} = \lambda \vec{a}$$

Eigen value λ can be obtained by solving, $\det[\lambda \hat{E} - \hat{A}] = 0$, where \hat{E} is the unit matrix.

- (1) (計算題 5%) Obtain the eigen values and eigen vectors of a matrix $\hat{A} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.
- (2) (申論題 10%) Assume that \hat{A} is a Hermite matrix, meaning $(\hat{A}^T)^* = \hat{A}^{-1}$, where "*" denotes the complex conjugate. Now we consider a linear transformation of vectors \vec{a} and \vec{b} , given by $\vec{a}' = \hat{A}\vec{a}$, and $\vec{b}' = \hat{A}\vec{b}$.

Prove $\vec{a}' \cdot \vec{b}' = \vec{a} \cdot \vec{b}$. Here $\vec{a} \cdot \vec{b} = \sum_j a_j^* b_j$ is the inner product of $\vec{a} = (a_1, a_2, \cdots)$ and $\vec{b} = (b_1, b_2, \cdots)$.

(3) (申論題 10%) Prove that the eigen values of a Hermite matrix are real.