科目: 工程數學 D(3006)

校系所組:中央大學電機工程學系(電子組)

交通大學電子研究所(甲組)

交通大學電控工程研究所(甲組、乙組)

1. (16%)

- a) (8%) For an $n \times n$ upper triangular matrix A, prove that det(A) equals the product of the diagonal elements of A.
- b) (8%) Prove that if V is a vector space of dimension n, then any set of n linearly independent vectors spans V.
- 2. (10%) For the following matrix, find a basis for the row space and nullspace.

$$\begin{bmatrix} -1 & 2 & -3 \\ -1 & 4 & 7 \\ 2 & -5 & 1 \end{bmatrix}$$

3 (24%)

a) (8%) For the system $Ax = \underline{b}$, find the least squares solution, where

$$A = \begin{bmatrix} 2 & 1 \\ 1 & -2 \\ -1 & 1 \end{bmatrix} \text{ and } \underline{b} = \begin{bmatrix} 5 & -15 & -20 \end{bmatrix}$$

b) (8%) Find the eigenvalues and corresponding eigenvectors of the following matrix:

c) (8%) Give the definition of similar matrix, and show that similar matrices have the same eigenvalues.

注:背面有試題

科目: 工程數學 D(3006)

多考用

校系所組:中央大學電機工程學系(電子組)

交通大學電子研究所(甲組)

交通大學電控工程研究所(甲組、乙組)

- 4. (5%) If F(s) is the Laplace transform of f(t), denoted by $F(s) = L\{f(t)\}$, find the inverse Laplace transform $L^{-1}\{F(as+b)\}$ in terms of f(t), where a > 0 and $b \neq 0$.
- 5. (5%) Solve $y'(t) = y(t) + 4 \int_0^t e^{-2(t-\tau)} y(\tau) d\tau$, y(0) = 1.
- 6. (5%) Let $A = \begin{bmatrix} 2 & -5 \\ 1 & -2 \end{bmatrix}$. Compute e^{At} .
- 7. (5%) Consider the non-homogeneous linear system $\underline{x'} = A\underline{x} + e^{\alpha t}\underline{y}$, where \underline{x} is a vector consisting of functions in t, α is not an eigenvalue of A, and $\underline{y} \neq \underline{0}$ is a constant vector. Find a particular solution of the system, in terms of A, α , \underline{y} and t.
- 8. (10%)
 - a) (5%) Determine the Fourier series coefficients (a_n, b_n) of the function $f(t) = t \cdot u(t)$ expanded over the interval $(-\pi, 2\pi)$, where u(t) is the unit-step function.
 - b) (5%) If the coefficients (a_n, b_n) from (a) are also the Fourier series coefficients of some function expanded over the interval $(-2\pi, 4\pi)$, find the function in terms of f(t).
- 9. (12%) Given $y_1(x) = x^r$ is one solution of the homogeneous 2^{nd} -order linear differential equation $x^2y''-5xy'+9y=0$.
 - a) (2%) Derive its characteristics equation in terms of parameter r.
 - b) (3%) Let $y_2(x) = v(x)y_1(x)$ be another linearly independent solution. Determine the governing differential equation of v(x).
 - c) (3%) Find v(x) by solving the differential equation in (b).
 - d) (4%) Apply the method of variation of parameters to find a particular solution of $y'' \frac{5}{x}y' + \frac{9}{x^2}y = x^2$.
- 10. (8%) Solve the differential equation $(x^2 1)y'' 6xy' + 12y = 0$ by power series of the form $y = \sum_{n=0}^{\infty} c_n x^n$.
 - a) (2%) Find the recurrence relation of c_n .
 - b) (4%) Find the two linearly independent solutions. Please write the first three nonzero terms if it is an infinite series.
 - c) (2%) State the guaranteed radius of convergence.