台灣聯合大學系統 103 學年度碩士班招生考試試題 共 之 頁 第 / 頁

類組: 電機類 科目: 工程數學 A(3003)

※請在答案卷內作答

- 1. (15 pts). Write down your proof as detailed as possible. Let V be a finite-dimensional vector space over a field F. The dual space V^* of V is defined as the vector space of linear functionals on V, i.e. $V^* = \{f | f : V \to F\}$. Let $T : V \to V$ be a linear operator. T's transpose $T^t : V^* \to V^*$ is a linear mapping from V^* to V^* defined by $T^t(g) = gT$ for each $g \in V^*$. Let $V = P(\mathbb{R})$, the vector space of polynomials over real numbers. For each positive integer k, define $\varphi_k : V \to \mathbb{R}$ by $\varphi_k(f(x)) = f^{(k)}(0)$, the k-th derivative of f(x) at x = 0. Let $\partial : V \to V$ be the differentiation mapping defined by $\partial (f(x)) = f'(x)$. Prove that $\partial^t \varphi_k = \varphi_{k+1}$.
- 2. (15 pts). Let $V = \mathbb{C}^{\infty}$, the vector space of all real functions having derivatives of all orders, and let y_1, y_2, \ldots, y_n be some fixed linearly independent functions in V. Let $\delta : M_{n \times n}(\mathbb{R}) \to \mathbb{R}$ be an alternating n-linear function (defined for each $n \times n$ matrix over \mathbb{R}) that is not identically to zero. For each $y \in V$ and $t \in \mathbb{R}$, define $T(y(t)) \in \mathbb{R}$ as follows.

$$T(y(t)) = \delta \begin{pmatrix} y(t) & y_1(t) & y_2(t) & \cdots & y_n(t) \\ y'(t) & y'_1(t) & y'_2(t) & \cdots & y'_n(t) \\ \vdots & \vdots & \vdots & & \vdots \\ y^{(n)}(t) & y_1^{(n)}(t) & y_2^{(n)}(t) & \cdots & y_n^{(n)}(t) \end{pmatrix}$$

- (a) Prove that $T: V \to V$ is a linear transformation.
- (b) Prove that the null space of T satisfies $N(T) \supset \text{Span}(\{y_1, y_2, \dots, y_n\})$.
- 3. (15 pts). Eigenvalues and eigenvectors.
 - (a) Let $A = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}$. Find its eigenvalues $\lambda_1, \lambda_2 \in \mathbb{C}$.
 - (b) Continuing from above, find a matrix $Q \in M_{2\times 2}(\mathbb{C})$ such that $Q^{-1}AQ$ is diagonal.
 - (c) Find the minimum positive integer n such that $A^n = I$.
- 4. (10 pts). Least-square approximation. Let f(t) be defined as follows,

$$f(t) = \begin{cases} 1, & \text{if } 0 \le t < \pi \\ -1, & \text{if } -\pi < t < 0. \end{cases}$$

Also, define

$$g(t) = a\cos t + b\cos 2t + c\sin t.$$

Find the coefficients (a, b, c) such that $E = \int_{-\pi}^{\pi} |g(t) - f(t)|^2 dt$ is minimized.

台灣聯合大學系統 103 學年度碩士班招生考試試題 共之 頁 第 之 頁

類組:<u>電機類</u> 科目:<u>工程數學 A(3003)</u>

※請在答案卷內作答

5. (25 pts). For a system of non-linear ordinary equations (with m>0) in a two dimension phase plane

$$y'_1 = y_2 - 2,$$

 $y'_2 = \frac{2m}{\pi}y_1 - \sin y_1,$

- (a) For m=1, please find all the critical points in the phase plane.
- (b) Find the range for the value of m such that this system of ordinary differential equation has seven critical points.
- 6. (20 pts). Complex integrals
 - (a) Find all the poles of

$$\frac{e^{az}}{1+e^z}, \quad \text{where} \quad 0 < a < 1.$$

(b) Calculate the integral for the contour C: Im(z) > 0, i.e., the Upper Half Plane (UHP), in the counter-clockwise direction,

$$\oint_{\text{C:UHP}} \frac{e^{az}}{1 + e^z} dz, \quad \text{where} \quad 0 < a < 1.$$

注:背面有試題