共_5_頁第 1 頁

1. (26%) Consider the following closed-loop feedback system as depicted in Figure 1, where G_P and G_C denote the system plant and controller, respectively.

Let the Laplace transform of the error e(t) be defined as $E(s) = U(s) - Y(s) \cdot H(s)$. Here, U(s), Y(s) and H(s), respectively, denote the Laplace transform of the input, output and feedback block.

- (a) (4%) Let $G_P = \frac{10}{s(s+3)}$, $G_C = K$ and H(s) = 1. Find the value of K so that the closed-loop poles will have undamped natural frequency $\omega_n = 10$. In addition, what will be the value of the corresponding damping ratio ζ ?
- (b) (6%) Plot the root loci for the closed-loop system defined in part (a) with $K \ge 0$ and find the range of K for guaranteeing the stability of the closed-loop system.
- (c) (8%) Let $G_p = \frac{5}{s(s+2)}$ and H(s) = 1. Design a controller $G_C(s)$ to make the closed-loop system to have the desired poles $p^* = -5 \pm jb$. What will be the corresponding value of b?
- (d) (8%) Let $G_P = \frac{5}{s(s+2)}$ and $H(s) = \frac{K}{(s+10)}$. Plot the root loci for the closed-loop system with the same $G_C(s)$ defined in part (c) for $K \ge 0$ and find the range of K for guaranteeing the stability of the closed-loop system.

共 5 頁 第 2 頁

- 2. (24%) Consider the closed-loop feedback system as given in Figure 1 above with the characteristic equation of the closed-loop system being given by $s^3 + (a+6)s^2 + 2Ks + 2K = 0.$
- (a) (8%) Let $G_C = 2K$ and H(s) = 1. Then find the function $G_P(s)$ and plot the root loci of the closed-loop system with a = 10 for $K \ge 0$.
- (b) (4%) Consider the closed-loop system defined in part (a) with K = 5 and a = 10. Solve the steady-state error for input $U(s) = \frac{1}{s}$ and $U(s) = \frac{1}{s^2}$, respectively.
- (c) (6%) Let the system plant $G_p(s)$ be the same as the one obtained in part (a) with the parameter a being a variable, H(s)=1 and $G_C=2K$. Find the value of a and the corresponding value of K so that the closed-loop system will have a triple poles on the real axis for $K \ge 0$.
- (d) (6%) Let the system plant G_p be the same as the one obtained in part (a) with the parameter a being a variable, H(s) = 1 and $G_C = 2K$. Find the range of a so that the closed-loop system will have no non-zero breakaway and/or break-in points on the real axis for $K \ge 0$.

共 5 頁 第 3 頁

3. (24%) Consider the feedback system in Figure 2, where C(s) = K > 0 is a constant gain. Suppose that G(s) has one unstable pole. For K = 1, the Nyquist plot of the system is shown in Figure 3. Note that the small circle in Figure 3, which is centered at (-1,0) with radius $r_0 = 0.1544$, is tangent to the Nyquist plot. Answer the following questions.

Figure 2: The feedback system for Problem 3 and Problem 4

- (a) (4%) What are the gain margin and the phase margin of the system when K = 1?
- (b) (6%) When K varies from 0 to ∞ , find the number of unstable closed-loop poles for different ranges of K.
- (c) (4%) For what value of K does the closed-loop system have a pair of pure imaginary poles?
- (d) (4%) What is the steady-state error with respect to the unit-step input when K = 0.8?
- (e) (6%) Let $r(t) = \sin(\omega t)$ and K = 1. The steady-state error is

$$e(t) = A(\omega)\sin(\omega t + \phi(\omega))$$

where the amplitude $A(\omega)>0$ and the phase $\phi(\omega)$ are functions of ω . What is $\max_{\omega>0}A(\omega)$?

共 5 頁 第 . 4 頁

Figure 3: The Nyquist plot for Problem 3 when K = 1

台灣聯合大學系統111學年度碩士班招生考試試題

類組:電機類 科目:控制系統(300D)

共_5_頁第5_頁

4. (26%) Consider the feedback system in Figure 2, where

$$G(s) = \frac{2\sqrt{5}}{s(s+1)}, \qquad C(s) = K_p + \frac{K_I}{s}$$

 $K_P, K_I > 0$. Define $z = \frac{K_I}{K_P}$.

- (a) (6%) Find the conditions on K_p and K_I such that the closed-loop system is stable.
- (b) (6%) Suppose that $K_p = 1$ and $K_I = 0$. Find the gain margin and phase margin of the system.
- (c) (6%) Let K_p vary from 0 to ∞ . Draw the root loci of the system for z = 0.5 and z = 2, respectively. Specify the intersection of asymptotes in each case.
- (d) (8%) Sketch the Nyquist plots for z = 0.5 and z = 2. Suppose that the Nyquist path detours to the right around s = 0. Which closed-loop system (z = 2 or z = 0.5) is stable based on the Nyquist criterion?