類組:電機類 科目:電磁學(3007)

共 5 頁 第 1 頁

※請在答案卡內作答

全部單選題。

1. (5%)
$$\nabla \cdot (a_x + a_y + a_z)$$
 is equal to
(A) 1 (B) $a_x + a_y + a_z$ (C) 0 (D) 3

2. (5%)
$$\nabla \times (a_x + a_y + a_z)$$
 is equal to
 (A) 1 (B) $a_x + a_y + a_z$ (C) 0 (D) 3

3. (5%) With characteristic impedance $Z_0 = 100 \Omega$, what is the reflection coefficient when the loading impedance Z_L is 50 Ω ?

(A) 0 (B)
$$\frac{1}{2}$$
 (C) $\frac{-1}{2}$ (D) $\frac{-1}{3}$

- 4. (5%) For a 50 Ω loading to be transformed into 100 Ω using quarter-wave transmission line, the characteristic impedance of this transmission line should be (A) 50 Ω (B) 100 Ω (C) 50 $\sqrt{2}$ Ω (D) 5000 Ω
- 5. (5%) When a half-wavelength transmission line is loaded with $Z_L=0$, its input reflection coefficient will be

(A)
$$-1$$
 (B) 0 (C) 1 (D) $\frac{1+j}{\sqrt{2}}$

- 6. (5%) Which of the following points will be the most likely answer for a normalized impedance of $\frac{1+j}{2}$
 - (A) Point A (B) Point B (C) Point C (D) Point D

類組: 電機類 科目: 電磁學(3007)

共5頁第2頁

※請在答案卡內作答

7. (5%) A loading impedance Z_L has its reflection coefficient indicated as point P on the Smith chart. When a capacitor is in series with this Z_L , which of the following points will be most likely position for the new reflection coefficient?

(A) Point A (B) Point B (C) Point C (D) Point D

8. (5%) In order to move impedance Z_A (as Point A) to Z_C (as Point C) with a transmission line, what is the most likely length for this line? Here λ is the wave length.

(A) λ (B) $\frac{\lambda}{2}$ (C) $\frac{\lambda}{4}$ (D) $\frac{\lambda}{8}$

- 9. (3%) A hollow rectangular waveguide cannot propagate TEM waves because:(A) of the losses caused (B) of the existence of only one conductor (C) it is dependent on the type of the material used (D) none of the mentioned
- 10. (3%) In TE mode of wave propagation in a rectangular waveguide, what is the equation that has to be satisfied?

(A)
$$(\partial^2/\partial x^2 + \partial^2/\partial y^2 - k_c^2).H_z(x, y) = 0$$
 (B) $(\partial^2/\partial x^2 - \partial^2/\partial y^2 + k_c^2).H_z(x, y) = 0$

(C)
$$(\partial^2/\partial x^2 + \partial^2/\partial y^2 + k_c^2).H_z(x, y) = 0$$
 (D) None of the mentioned

注:背面有試題

類組:電機類 科目:電磁學(3007)

共_5 頁 第 3 頁

※請在答案卡內作答

11. (3%) For TE_{10} mode, if the waveguide is filled with air and the broader dimension of the waveguide is 2 cm, then the cutoff frequency is:

(A) 5 MHz (B) 7.5 MHz (C) 7.5 GHz (D) 5 GHz

12. (3%) For dominant mode propagation in TE mode, if the rectangular waveguide has a broader dimension of 31.41 mm, then the cutoff wave number is:

(A) 500 (B) 50 (C) 1000 (D) 100

13. (3%) The wavelength of a wave in a waveguide

(A) depends only on the waveguide dimensions and the free-space wavelength

(B) is greater than of free space (C) is inversely proportional to the phase velocity

(D) is directly proportional to the group velocity

注意:背面有試題

類組: 電機類 科目: 電磁學(3007)

共_5頁第4頁

※請在答案卡內作答

14. (5%) As shown in Fig. 1, a dielectric-slab waveguide with permittivity ϵ_d = $5\epsilon_0$ and permeability μ_d = μ_0 is situated in free space (ϵ_0 , μ_0). Assume that there is no dependence on the x-coordinate, the dielectric is lossless, and the waves propagate in the +z-direction. f_{c1} and f_{c2} are the cutoff frequency of the lowest-order odd TM mode when the dielectric thickness is d= 3 mm and d= 6 mm, respectively. Determine (f_{c1} , f_{c2}). (A) (0 Hz, 0 Hz) (B) (5 GHz, 10 GHz) (C) (10 GHz, 20 GHz) (D) (20 GHz, 40 GHz)

Fig. 1

15. (5%) As shown in Fig. 1, a dielectric-slab waveguide with permittivity ϵ_d = 5 ϵ_0 and permeability μ_d = μ_0 is situated in free space (ϵ_0 , μ_0). Assume that there is no dependence on the x-coordinate, the dielectric is lossless, and the waves propagate in the +z-direction. The waveguide can support odd TM modes designated as TM_{O,n}, even TM modes as TM_{E,n}, odd TE modes as TE_{O,n}, and even TE modes as TE_{E,n} where n=1,2,3,.... Determine which mode whose field characteristics will not be disturbed when a perfectly conducting plane is introduced to coincide with the y= 0 plane.

(A) $TE_{E,1}$ (B) $TM_{O,1}$ (C) $TM_{E,1}$ (D) $TM_{E,2}$

- 16. (5%) As shown in Fig. 1, a dielectric-slab waveguide with permittivity ϵ_d = 5 ϵ_0 and permeability μ_d = μ_0 is situated in free space (ϵ_0 , μ_0). Assume that there is no dependence on the *x*-coordinate, the dielectric is lossless, and the waves propagate in the +*z*-direction. Determine the maximum thickness of the slab material that will allow single TE and TM mode operation below 20 GHz.
 - (A) 3 mm (B) 3.25 mm (C) 3.5 mm (D) 3.75 mm

注:背面有試題

台灣聯合大學系統108學年度碩士班招生考試試題

類組:電機類 科目:電磁學(3007)

共5頁第5頁

※請在答案卡內作答

17. (5%) Consider oblique incidence with parallel polarization from medium 1 to medium 2, the Brewster angle is

(A)
$$\sin^{-1} \frac{1 - \frac{\mu_1 \epsilon_2}{\mu_2 \epsilon_1}}{1 - (\frac{\mu_1}{\mu_2})^2}$$
, (B) $\sin^{-1} \sqrt{\frac{1 - \frac{\mu_1 \epsilon_2}{\mu_2 \epsilon_1}}{1 - (\frac{\mu_1}{\mu_2})^2}}$, (C) $\tan^{-1} \sqrt{\frac{\epsilon_2}{\epsilon_1}}$, (D) no exist.

- 18. (5%) The four Maxwell's equations do not contain
 - (A) Faraday's law, (B) Coulomb's law, (C) Ampere's law, (D) Gauss's law.
- 19. (5%) A sinusoidal electric intensity of amplitude 250 V/m and frequency 1 GHz exists in a lossy dielectric medium that has a relative permittivity of 2.5 and a loss tangent of 0.001. The average power dissipated per unit volume is (A) 2.14, (B) 4.34, (C) 68.24, (D) 74.32 W/m³.
- 20. (5%) The phase constant in a low-loss dielectric medium is

(A)
$$\omega\sqrt{\mu\epsilon}$$
, (B) $\frac{\omega\epsilon''}{2}\sqrt{\frac{\mu}{\epsilon'}}$, (C) $\omega\sqrt{\mu\epsilon'}\left[1+\frac{1}{8}\left(\frac{\epsilon''}{\epsilon'}\right)^2\right]$, (D) $\sqrt{\pi f\mu\sigma}$.

21. (5%) A plane wave with a phase velocity $u_p = \omega/\beta$ propagates in a medium. The anomalous dispersion occurs with

(A)
$$\frac{du_p}{d\omega} > 0$$
, (B) $\frac{du_p}{d\omega} < 0$, (C) $\frac{du_p}{d\omega} = 0$, (D) $u_p = 1/\sqrt{\mu\epsilon}$.

- 22. (5%) The induction cooker provides fast heating with
 - (A) flux cutting emf, (B) traveling wave, (C) retarded potential, (D) eddy current.