國立中央大學九十八學年度電機系碩士在職專班招生試題

筆試科目:基礎電子學

考試時間: 100 分鐘

共1頁,第1頁

1. 計算題 (15分)

For the circuit shown in Fig. 1, assuming an ideal op amp, find an expression for the output v_0 in terms of input v_1 and v_2 .

2. 計算題 (15分)

For the circuit shown in Fig. 2, assuming the diodes are ideal ones, calculate the currents in each of the diodes. What vo results?

3. 計算題 (20分)

The MOSFETs in the circuit of Fig. 3 are matched, with $\mu_n C_{ox}(W/L)_1 = \mu_p C_{ox}(W/L)_2 = 50 \text{ }\mu\text{A/V}^2$ and $|V_t| = 2 \text{ V}$. Feedback resistor $R_F = 10 \text{ }M\Omega$. 3-1 (10 %) For G and D open, what are the drain currents I_{Dl} and I_{D2} ?

3-2 (10 分) For $r_0 = \infty$, what is the voltage gain of the amplifier from G to D?

4. 計算題(24分)

For the NMOS transistor with gate length of L = 0.4 μ m, $\mu_n C_{ox}(W/L) = 267 \mu$ A/V² and $|V'_{An}| = 5 \text{ V/}\mu$ m. Let the transistor be operated at overdrive voltage of $V_{OV} = V_{GS}$. $V_t = 0.25 \text{ V}$ and drain current of $I_D = 1 \text{ mA}$. The capacitances of the NMOS transistor are $C_{gg} = 100 \text{ fF}$ and $C_{gd} = 30 \text{ fF}$. Find the following design parameters.

- 4-1 (4 分) Find W/L ratio that required to obtain I_D =1 mA.
- 4-2 (4 %) transconductance g_m (mA/V).
- 4-3 (4 分) output resistance r_0 (kΩ).
- 4-4 (4 分) intrinsic voltage gain Ao (V/V).
- 4-5 (4 分) unity gain frequency f_T (GHz).
- 4-6 (4 分) gain-bandwidth product f_t of loaded by a 1-pF capacitance (GHz).

5. 計算題(14分)

For a practical amplifier modeled by the circuit of Fig. 4, $g_m = 5$ mA/V, $R_{sig} = 150$ k Ω , $R_{in} = 0.65$ M Ω , $R_L' = 10$ k Ω , $C_{gs} = 2$ pF, and $C_{gd} = 0.5$ pF. There is also an output wiring capacitance of $C_L = 3$ pF. Find the following values:

- 5-1 (5 分) corresponding midband voltage gain.
- 5-2 (6 \Re) each open-circuit time constant, τ_{ga} , τ_{gd} , and τ_L .
- 5-3 (3 分) and estimate of the 3-dB frequency.

6. 選擇題(12分)

Figures 5-8 show four feedback amplifiers. Identify theirs feedback type.

- 6-1 (3 分) The circuit in Fig. 5 is a (1) series-series (2) series-shunt (3) shunt-shunt (4) shunt-series feedback topology.
- 6.2 (3 分) The circuit in Fig. 6 is a (1) series-series (2) series-shunt (3) shunt-shunt (4) shunt-series feedback topology.
- 6-3 (3 分) The circuit in Fig. 7 is a (1) series-series (2) series-shunt (3) shunt-shunt (4) shunt-series feedback topology.
- 6-4 (3 分) The circuit in Fig. 8 is a (1) series-series (2) series-shunt (3) shunt-shunt (4) shunt-series feedback topology.

