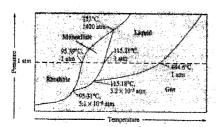
## 國立中央大學九十三學年度碩士班研究生入學試題卷 共之頁 第一頁


## 所別: 化學學系碩士班 不分組科目: 綜合化學

- 1. For this process:  $Br_{2(l)} \rightarrow Br_{2(g)}$ , where  $\Delta H^{\circ} = 31.0 \text{ kJ/mol}$  and  $\Delta S^{\circ} = 93.0 \text{ J K}^{-1} \text{mol}^{-1}$ , what is the boiling point of liquid  $Br_2$  at 1.0 atm? (6 pts)
- 2. Arrange the following species according to their strength as bases: Cl<sup>-</sup>, F<sup>-</sup>, NO<sub>2</sub><sup>-</sup>, CN<sup>-</sup>, C<sub>2</sub>H<sub>3</sub>O<sub>2</sub><sup>-</sup> (5 pts) [HF:  $Ka = 7.2 \times 10^{-4}$ ; HNO<sub>2</sub>:  $K_a = 4.0 \times 10^{-4}$ ; HCN:  $K_a = 6.2 \times 10^{-10}$ ; C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>H:  $K_a = 1.8 \times 10^{-5}$ ]
- 3. The rate of effusion of a particular gas was measured to be 24.0 mL/min. Under the same conditions the rate of effusion of pure methane gas, CH<sub>4</sub> is 47.8 mL/min. What is the molar mass of the unknown gas? (6 pts)
- 4. Considering the following equilibrium:

$$2SO_{2(g)} + O_{2(g)} \rightarrow 2SO_{3(g)}$$

An equilibrium mixture, at 25°C, contains  $O_{2(g)}$  and  $SO_{3(g)}$  at partial pressures of 0.50 atm and 2.0 atm, respectively. Determine the equilibrium partial pressure of  $SO_{2(g)}$  in the mixture. ( $\Delta G_{f(SO2)}^{\circ} = -300 \text{ kJ/mol}$ ;  $\Delta G_{f(SO3)}^{\circ} = -371 \text{ kJ/mol}$ ) (8 pts)

- ABS Plastic is a tough, hard plastic used in applications requiring shock resistance. The
  polymer consists of three monomer units: acrylonitrile (CH<sub>2</sub>=CH-C≡N), butadiene
  (CH<sub>2</sub>=CH-CH=CH2), and styrene (C<sub>6</sub>H<sub>5</sub>CH=CH<sub>2</sub>).
  - (a) Draw two repeating units of ABS plastic assuming the three monomer units react in a 1:1:1 mol ratio and react in the same order as the monomers listed above, i. e. A-B-S. (5 pt)
  - (b) In fact, ABS is not formed in a 1:1:1 mol ratio of the three monomers. Please calculate the percent by mass of acrylonitrile, butadiene, and styrene based on the following information: (i) ABS plastic contains 8.80% N by mass. (ii) A 1.20 g sample of ABS plastic reacts completely with 0.605 g of Br<sub>2</sub> (Br, atomic mass = 79.90). (10 pts)
- 6. Use the following phase diagram for sulfur to answer the following questions.



- a. How many triple points are in the phase diagram? (2 pts)
- b. What phase is stable at room temperature and 1.0 atm? (2 pts)
- c. What are the normal melting point and boiling point of sulfur? (4 pts)
- d. Which is the denser solid phase? (2 pts)

注:背面有試題

## 國立中央大學九十三學年度碩士班研究生入學試題卷 共之頁 第2頁

## 所別: 化學學系碩士班 不分組科目: 綜合化學

7. The Food and Drug Administration (FDA) of the United States has approved a new sweetener (artificial sugar), neotame, in 2002. It is about 8,000 times sweeter than sugar on a weight basis. The structures of neotame and aspartame are shown below:

Aspartame, R = HNeotame,  $R = CH_2CH_2C(CH_3)_3$ 

- (a) What are the two main amino acids in producing these two sweetner? Please draw them and give their names. (6 pts)
- (b) The metabolism of neotame is shown in the figure 1. According to this, what is the potential risk in using these sweeteners? (4 pts)

$$O_{2}C_{6}H_{5}$$
 $O_{2}C_{6}H_{5}$ 
 $O_{2}C_{6}$ 

Figure 1.

- 8. List two commercial electrolytic processes and describe their redox reactions. (10 pts)
- 9. In defining the sizes of orbitals, why must we use an arbitrary value, such as 90% of the total probability (10 pts)
- 10. The complex ion PdCl<sub>4</sub><sup>2-</sup> is diamagnetic. Propose a structure for PdCl<sub>4</sub><sup>2-</sup> and explain your answer. (10 pts)
- 11. Consider the following energy changes:

|                                            | ΔE(kJ/mol) |
|--------------------------------------------|------------|
| $Mg(g) \longrightarrow Mg^+(g) + e^-$      | 735        |
| $Mg^+(g) \longrightarrow Mg^{2+}(g) + e^-$ | 1445       |
| $O(g) + e^- \longrightarrow O(g)$          | -141       |
| $O(g) + e \rightarrow O^2(g)$              | 878        |

- a. Magnesium oxide exists as  $Mg^{2+}O^{2-}$  not as  $Mg^{+}O^{-}$ . Explain it. (5 pts)
- b. What experiment could be done to confirm that magnesium oxide does not exist as Mg<sup>+</sup>O<sup>-</sup>? (5 pts).

