國立中央大學八十六學年度碩士班研究生入學試題卷

所別: 化學研究所 不分組 科目: 物化、分析 共 2 頁 第 / 頁

物化部份

- 1. Now we have a heat engine that operates in the following cycle(Note: every step is reversible):
 - State (a) to state (b) is an isothermal process.
 - State (b) to state (c) is an adiabatic process.
 - State (c) to state (d) is an isothermal process.
 - State (d) to state (a) is an isochoric process

If this engine operates on one mole ideal gas and $P_a=4$ atm, $V_a=2$ liter, $P_b=2$ atm, $V_b=4$ liter, $P_d=2$ atm, $V_d=2$ liter, please answer the following questions

- (i) What are the values of P_c , V_c and the two temperatures of the two isothermal curves? (4 points)
- (ii) Please write down the values of ΔE (change of energy), q (heat), w (work) of each step(a) \rightarrow (b), (b) \rightarrow (c), (c) \rightarrow (d) (d) \rightarrow (a) (Here, we define $\Delta E = q w$). (12 points)
- (iii) Based upon the above, please show that ΔS(Entropy) of the whole cycle is zero.(2 Points).
- 2. Liquid helium boils at about 4K and liquid hydrogen boils at about 20K. What is the efficiency of a reversible engine operating between heat reservoirs at these temperatures? (2 points)
- 3. A unimolecular gas reaction is proposed as

 $A + A \leftrightarrow A^{+} + A$ (rate constant is k_1 for the forward and is k_{-1} for the reverse) $A^{+} \rightarrow B + C$ (rate constant is k_2)

The species A* is in excited state, present in low concentration. If the steady state approximation is applied here, please show that the mechanism predicts first-order kinetics at higher A concentration and second-order kinetics at lower A concentration. (5 points)

- 4. In the far-IR spectrum of HBr, there is a series of lines having a separation of 16.94cm⁻¹, Please calculate the moment of inertia and bond length of HBr. (5 points)
- 5. For a particle in a one-dimensional box (length = L), please show that

$$\Delta p_x \cdot \Delta x = \frac{h}{4\pi} \sqrt{1 + \frac{n^2 \pi^2 - 3^2}{3}} > \frac{h}{4\pi}$$

(Hint: $\Psi_n = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$) (10 points).

- 6. Please write down the electronic configuration and the ground electronic state term symbol of Li (lithium) (4 points)
- Please write down the molecular orbital (MO) energy diagrams of N₂ and O₂ (6 points)

13.4

國立中央大學八十六學年度碩士班研究生入學試題卷

所別: 化學研究所 不分組 科目:

物化、分析

共2頁 第2頁

分析部份

- Describe briefly the principle of Fourier Transform IR (FT-IR) Spectroscopy and what are the advantages of FT-IR spectroscopy compared with a Dispersive instrument? (10 points)
- What are the principle, advantages and limitations of each of the following detectors used in gas chromatography: (a) thermal conductivity (b) atom emission (c) electron capture and (d) flame ionization detectors. (10 points)
- 3. Try to define the following terms: (10 points)
 - (a) Coherent radiation
 - (b) photoelectric effect
 - (c) fluorescence
 - (d) phosphorescence
- 4. From the standpoint of Boltzmann distribution explain why increasing flame temperature enhance the sensitivity of AES more than it does to AAS. (10 points)
- 5. In oxidation/reduction titration, why the change in E_{system} in the equivalence point region is controlled by the difference between E°_{reductant} and E°_{oxidant}. How does this difference relate to K_{eq} (equilibrium constant)? (10 points)