V

國立中央大學95學年度碩士班考試入學試題卷 共一頁第一頁

所別:天文研究所碩士班科目:應用數學

(1) (10 points)

x, y, z are three functions in which only two of them are independent (i.e., the third one can be expressed as a function of the other two, e.g., x = x(y, z)). Show that

$$\left(\frac{\partial x(y,z)}{\partial y}\right)_z \left(\frac{\partial y(z,x)}{\partial z}\right)_x \left(\frac{\partial z(x,y)}{\partial x}\right)_y = -1.$$

(2) (10 points)

x and y are real, and $i = \sqrt{-1}$. Show that

$$\tan(x+iy) = \frac{\sin(2x) + i\sinh(2y)}{\cos(2x) + \cosh(2y)}.$$

(3) (20 points)

- (a) (15 points) Show that in three-dimensional geometry $\Phi = 1/|\vec{r} \vec{r}_s|$ satisfies the Poisson equation $\nabla^2 \Phi = -4\pi \delta(\vec{r} \vec{r}_s)$, where \vec{r}_s is a constant, and δ is the Dirac delta-function. What are the corresponding Φ in two-dimensional and one-dimensional geometry?
- (b) (5 points) Derive the solution $\psi(\vec{r})$ for the Poisson equation $\nabla^2 \psi = 4\pi G \rho(\vec{r})$.

(4) (20 points)

- (a) (5 points) Solve the Fredholm integral equation $y(x)=x^7+\int_0^1 x^2t^2y(t)\,\mathrm{d}t$. [Hint: $\int_0^1 t^2y(t)\,\mathrm{d}t$ is a constant.]
- (b) (15 points) Solve the Volterra integral equation $y(x) = x^7 + \int_0^x x^2 t^2 y(t) dt$. [Hint: Change it to an ordinary differential equation.]

(5) (20 points)

Solve the following set of ordinary differential equations

$$\frac{\mathrm{d}x}{\mathrm{d}t} = x - y$$
, $\frac{\mathrm{d}y}{\mathrm{d}t} = -x + 2y + z$, $\frac{\mathrm{d}z}{\mathrm{d}t} = x + z$.

The initial conditions are x = y = z = 1 at t = 0.

(6) (20 points)

One-dimensional Navier-Stokes equation with negligible pressure can be written as

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2},$$

where the velocity u is a function of t and x. Assuming constant viscosity ν , let

$$u = -2\nu \frac{\partial \log \phi}{\partial x}$$

then derive a partial differential equation for $\phi(t,x)$. From the general solution of this partial differential equation, write down the solution for u(t,x).