國立中央大學 105 學年度碩士班考試入學試題

所別: 光電科學與工程學系碩士班 不分組(一般生)

共二頁 第1頁

科目: 電子學

本科考試可使用計算器,廠牌、功能不拘

*請在答案卷(卡)內作答

- 1. (40%) A p-n junction is formed in Si whose Fermi level on the p-side is 25 meV above the valence bandedge E_c . The n-side material is doped at a concentration of $N_d=10^{15}~{\rm cm}^{-3}$. Given the electric field of $E(0)=-1.583\times 10^4~{\rm V/cm}$ at the junction (x=0), the junction area of 0.02 cm³, minority carrier life time $\tau_n=\tau_p=1.0~\mu{\rm s}$, and the temperature 300 K, answer the following questions:
 - (a) (5 %) Explain the purpose(s) of having the acceptor level very close to E_c .
 - (b) (5 %) Determine the contact potential energy qV_0 , where q is the elementary charge.
 - (c) (10 %) Derive, showing all the work, the expression for the electric field at the junction [i.e. E(0)].
 - (d) (5 %) Calculate the total width W of the space charge layer.
 - (e) (5 %) Calculate the current flow under a forward bias of 0.60 V.
 - (f) (10 %) What is the effective injection rate of holes into the n side under the bias condition given in (e)?

Constants: $q = 1.602 \times 10^{-19}$ C; kT = 0.0259 eV; $\epsilon_0 = 8.854 \times 10^{-14}$ F/cm For Si: $D_p = 12.43$ cm²/s, $D_n = 35.0$ cm²/s, $E_g = 1.11$ eV, $n_i = 1.5 \times 10^{10}/\text{cm}^3$, $\epsilon_r = 11.8$, Diode equation: $I = eA \left[\frac{D_n}{L_n} n_{p0} + \frac{D_p}{L_p} p_{n0} \right] \left[\exp \left(\frac{qV}{kT} \right) - 1 \right]$

- 2. (10%) Assume both carriers present in a semiconductor sample in thermal equilibrium. Derive, showing all the work, the minimum conductivity of this sample in terms of the mobility of each carrier species and the intrinsic concentration n_i .
- 3. For the circuit shown in Fig. 1(a), the input and output voltages that are zero at t = 0 is driven by the input signal v_l shown in Fig. 1(b). The resistance and capacitance in the circuit are $C_1 = 0.2 \,\mu\text{F}$ and $R_2 = 5 \,\text{K}\Omega$. Determine the maximum value (5%) and minimum value (5%) of output signal v_0 . Sketch and label the resulting output waveform v_0 versus time (5%).

注:背面有試題

國立中央大學 105 學年度碩士班考試入學試題

所別: 光電科學與工程學系碩士班 不分組(一般生)

共一頁 第一頁

科目: 電子學

本科考試可使用計算器,廠牌、功能不拘

*請在答案卷(卡)內作答

- 4. For the circuit shown in Fig. 2, assume small-signal output resistances of transistors $r_{01} \sim r_{04}$ are finite and r_{05} is infinite.
 - (a) Determine the small-signal voltage gain $A_v = v_O/v_I$ (10%).
 - (b) Determine the output resistance R_o (5%).

5. For the circuit shown in Fig. 3, derive the expressions for the voltage transfer function $T(s) = V_o(s)/V_i(s)$ (5%), determine the cutoff frequency f_{3dB} (5%), and sketch Bode plots of magnitude (5%) and phase (5%) for the circuit.

注:背面有試題