所別:數學系碩士班 不分組科目:高等微積分

R denotes the set of all real numbers.

- 1. Let $a \in R$ and define the sequence a_1, a_2, \ldots in R by $a_1 = a$, and $a_n = a$ $a_{n-1}^2 - a_{n-1} + 1$ if n > 1. For what $a \in R$ is the sequence $\{a_n\}$
 - (a) Monotone? (3%)
 - (b) Bounded ? (3%)
 - (c) Convergent? Compute the limit in the cases of convergence. (4%)
- 2. (20%) Let $C = \{\sum_{n=1}^{\infty} \frac{a_n}{3^n} | a_n = 0 \text{ or } 2 \text{ for each } n\}$. Prove : (a) C is a **compact set** in R.

 - (b) C is uncountable.
 - (c) $int(C) = \emptyset$ (empty set).
 - (d) Show that C is **totally disconnected**; that is, if $x, y \in C$ and $x \neq y$ then $x \in U$ and $y \in V$ where U and V are open sets that disconnect C.
- 3. (15%) Let f be a continuous function on $[0,\infty)$ such that $0 \le f(x) \le Cx^{-1-\varepsilon}$
 - for some $C, \varepsilon > 0$, and let $A = \int_0^\infty f(x) dx$. Let $f_n(x) = n f(nx)$.

 (a) Show that $\lim_{n \to \infty} f_n(x) = 0$ for all x > 0 and that the convergence is uniform on $[\delta, \infty)$ for any $\delta > 0$.
 - (b) Show that $\lim_{n\to\infty} \int_0^1 f_n(x) dx = A$.
 - (c) Show that $\lim_{n\to\infty}\int_0^1 f_n(x)g(x)dx=Ag(0)$ for any integrable function g on [0,1] that is continuous at 0. (Hint: Write $\int_0^1 = \int_0^\delta + \int_\delta^1$.)
- 4. Let $f_n(x) = xe^{-nx}, x \in [0, \infty), n = 0, 1, 2, \dots$
 - (a) Show that $f(x) = \sum_{n=0}^{\infty} f_n(x)$ exists. Compute f explicitly. (2%)
 - (b) Is f continuous? (3%)
 - (c) Find a suitable set on which the convergence is uniform. (5%)
 - (d) May we differentiate term by term on $(0, \infty)$? Why? (5%)
- 5. (20%) Show that if $f:A\subset R^2\to R$ has a critical point $(x_0,y_0)\in A$ and we

$$\Delta = \frac{\partial^2 f}{\partial x^2} \cdot \frac{\partial^2 f}{\partial y^2} - (\frac{\partial^2 f}{\partial x \partial y})^2$$

be evaluated at (x_0, y_0) , then

- (a) $\triangle > 0$ and $\frac{\partial^2 f}{\partial x^2}(x_0, y_0) > 0$ imply f has a local minimum at (x_0, y_0) .
- (b) $\triangle > 0$ and $\frac{\partial^2 f}{\partial x^2}(x_0, y_0)$ < 0 imply f has a local maximum at (x_0, y_0) . (c) $\triangle < 0$ implies (x_0, y_0) is a saddle point of f.
- (d) Determine the nature of the critical points of $f(x,y) = x^3 + y^2 6xy + y^2 + y^2 + 6xy + y^2 + y^2$
- 6. (20%)
 - (a) Can the equation $\sqrt{x^2 + y^2 + 2z^2} = \cos z$ be solved uniquely for y in terms of x and z near (0,1,0)? For z in terms of x and y?
 - (b) Investigate the possibility of solving the equations $u^3 + xv y = 0, v^3 + y$ yu - x = 0 for any two of the variables as functions of the other two near the point (x, y, u, v) = (0, 1, 1, -1).

