國立中央大學 106 學年度碩士班考試入學試題

所別: 數學系碩士班 數學組(一般生)

共1頁 第1頁

數學系碩士班 應用數學組(一般生)

數學系碩士班 數學組(在職生)

科目: 線性代數

本科考試禁用計算器

*請在答案卷

內作答

(20%) 1. Let
$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \\ 1 & 4 & 2 & 3 \\ 1 & 3 & 3 & 3 \end{pmatrix}$$
 and $b = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ and $c = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$.

- (a) Find the reduced row echelon form of A and the rank of A. (5%)
- (b) Find the inverse of A if it exists. (5%)
- (c) Find the set of solutions of the linear system AX = b. (5%)
- (d) Find the set of solutions of the linear system AX = c. (5%)

(30%) 2. Let
$$A = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
.

- (a) Determine the characteristic polynomial of A and find the eigenvalues of A. (6%)
- (b) For each eigenvalue λ of A, find the eigenspace corresponding to λ . (8%)
- (c) Determine whether A is diagonalizable. Explain why. (4%)
- (d) Determine the Jordan canonical form of A. (4%)
- (e) Compute A^{101} . (8%)
- (20%) 3. Let V be the space of functions from $\mathbb R$ to $\mathbb R$ and let U be the subset consisting of continuous functions in V. Let $S = \{1, \sin x, \cos x\}$ and W = Span(S). Define $T: W \to W$ by T(f) = f', where f' is the derivative of f.
- (a) Prove or disprove that U is a subspace of V. (4%)
- (b) Show that S is a basis for W. (4%)
- (c) Show that T is a linear transformation and find the null space of T. (4%)
- (d) Find the matrix representation of T in the ordered basis S. (4%)
- (e) For each eigenvalue λ of A, find the set of eigenvectors corresponding to λ . (4%)
- (15%) 4. (a) State the Dimension Theorem. (5%)
- (b) Let $A, B \in M_{n \times n}(\mathbb{R})$. Prove or disprove that $\operatorname{rank}(A) \geq \operatorname{rank}(AB)$. (5%)
- (c) Let $A, B \in M_{n \times n}(\mathbb{R})$. Prove or disprove that $\operatorname{rank}(B) \geq \operatorname{rank}(AB)$. (5%)
- (15%) 5. Let $V = \mathbb{R}^4$, $S = \{(0,0,1,1), (0,1,0,1), (0,1,1,0)\}$ and W = Span(S).
- (a) Find an orthogonal basis for W. (8%)
- (b) Determine the dimension of the orthogonal complement of W. (3%)
- (c) Find an orthogonal basis for the orthogonal complement of W. (4%)