所別:工業管理研究所碩士班 甲組 科目:微積分

- 1. Find the Taylor polynomials (of the indicated degree, and at the indicated point) for the following functions:
 - (a) (5 points) $f(x) = e^{e^x}$; degree 3, at 0
 - (b) (5 points) sin; degree 2n, at $\frac{\pi}{2}$
 - (c) (5 points) exp; degree n, at 1
- 2. Evaluate each of the following:

(a) (5 points)
$$\lim_{n \to \infty} \frac{\sqrt[n]{e} + \sqrt[n]{e^2} + \dots + \sqrt[n]{e^n}}{n}$$

(b) (5 points)
$$\lim_{n\to\infty} \left(\frac{1}{n+1} + \dots + \frac{1}{2n} \right)$$

- 3. (10 points-PROOF) Suppose that $0 \le a_n \le b_n$ for all n and $\sum_{n=1}^{\infty} b_n$ converges, show that $\sum_{n=1}^{\infty} a_n$ converges.
- 4. (15 points-PROOF) Suppose that $\{f_n\}$ is a sequence of functions which are continuous on [a, b], and that $\{f_n\}$ converges uniformly on [a, b] to f. Show that f is also continuous on [a, b].
- 5. (10 points-PROOF) A real-valued function f defined in (a,b) is said to be convex

$$-f(\lambda x+(1-\lambda)y)\leq \lambda f(x)+(1-\lambda)f(y),$$

for a < x < b a < y < b $0 < \lambda < 1$. Show that every convex function is continuous. 6. (a) (10 points-PROOF) Let p > 1 with $\frac{1}{p} + \frac{1}{q} = 1$. For a, b, t > 0, show that

$$ab \leq \frac{a^p t^p}{p} + \frac{a^q t^{-q}}{q}$$

and ab is the minimum value of the right side.

(b) (15 points-PROOF) For a_k , $b_k \ge 0$, p > 1, $\frac{1}{p} + \frac{1}{q} = 1$, show that

$$\sum_{1}^{n} a_{k} b_{k} \leq \left(\sum_{1}^{n} a_{k}^{p}\right)^{1/p} + \left(\sum_{1}^{n} b_{k}^{q}\right)^{1/q}$$

(c) (15 points-PROOF) For a_k , $b_k \ge 0$, p > 1, show that

$$\left(\sum_{1}^{n}\left(a_{k}+b_{k}\right)^{p}\right)^{1/p} \leq \left(\sum_{1}^{n}a_{k}^{p}\right)^{1/p} + \left(\sum_{1}^{n}b_{k}^{p}\right)^{1/p}$$