

1．Please answer the following probleme：
（a）（ 5% ）Give en example tsble of simplex mpthod，from which we can conclude that the linear programming problem we want to solve is unbounded．（Our objective is to maximize the cibjection function）
（b）（ 5% ）Give an example final table of aimplex methed，from which we can conclucle that there are infinite many optimel solutions for the linear programming problem we want to solve．（Our objective is to maximize the objection function）
（c）（ 5% ）Whet are the results of a lineer programming problem that eap be found by using aimplex method？When do we need to use blg－M simplex method to solve a linear programming problem．
（d）（ 5% ）Give a real world example that we can model ft as a minimum spanoing tree problem to find the solution．
（e）（5\％）Give a real world exemple that we cent model it as a maximum flow problern to find the solution．

2．Consider the following linear programming problem

$$
\begin{aligned}
& \max Z=4 x_{1}+2 x_{2}+3 x_{3}+5 x_{4} \\
& \text { ot. } 8 x_{1}+x_{2}+x_{3}+5 x_{4} \leq 300 \\
& 2 x_{1}+3 x_{2}+4 x_{3}+2 x_{4} \leq 300 \\
& 2 x_{1}+x_{2}+2 x_{3}+x_{4} \leq 400 \\
& x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0, x_{4} \geq 0 .
\end{aligned}
$$

（a）（ 10% ）Use simplex method to find the optimal aolution if it exists．Please also identify the basie matrix and Its inveras at each step．
（b）（5\％）Write down the dual problem of this problem and write down the optimal solution of thls dual problem．
（c）（ 10% ）Now consider the following linear programming problem

$$
\begin{array}{r}
\max Z=4 x_{1}+2 x_{2}+3 x_{3}+5 x_{4} \\
\text { s.t. } 8 x_{1}+x_{2}+x_{3}+5 x_{4} \leq 300 \\
2 x_{1}+3 x_{2}+4 x_{3}+2 x_{4} \leq 300 \\
2 x_{1}+x_{2}+2 x_{3}+x_{4}=400 \\
x_{1} \geq 0, x_{2} \geq 0, x_{9} \geq 0, x_{4} \geq 0 .
\end{array}
$$

Use two－phese method to check if it is feasible and find the optimal solution if it is fasibils．

國立中央大嚳九十一學年度碩士班研究生入學試題券

所則：
 \qquad共 2 耳

第2．

3．A job shop consists of three machines and two repairmen．The amount of time a machine works before breaking down is exponentially distributed with paean λ ，The broken machines are fixed on the first－come－firat－served bests．If the amount it takes a single repairman to fix a machine is exponentially distributed with mean μ_{1}
（a）（5\％）Describe this syatems as continuous time Markov chain．Is it a birth and death process？
（b）（5\％）What ta the average number of machines not in usa？What is the utilization of any machine？
（C）（5\％）What proportion of time are both repairmen busy？What is the utilization of any repairman？

4．Consider a $M / M / 2 / 4$ queueing system with arrival rate 1 per hour and service rate 2 per hour．
（a）（ 6% ）Find the lImiting probabilities．
（b）（ 6% ）What is the blocking probability？What is the effective arrival rate？
（c）（ 5% ）What is the average number of busy servers？What is the utilization of any server？
（d）（5\％）What is the average number of customers in system？
（e）（ 5% ）What is the average waiting time in system of a customer（included those rejected customers，whose waiting times are zero）？What is the average welling time in system of an entering customer？
（f）(5%) What is the probability that an entering customer must wait？
（g）（ 5% ）Consider the a $M / M / 2$ aysten when same arrived rate and service rate．Find that probability that the aystera is empty．

