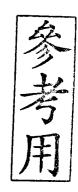
所別:財務金融學系碩士班 甲組(一般生) 科目:統計 共 3 頁 第 1 頁

財務金融學系碩士班 乙組(一般生)

本科考試禁用計算器

*請在試卷答案卷(卡)內作答



Answering Problems

State with your reasoning or proofs. Please be precise and concise. No point will be graded if no explanation is provided. (答題請精準、簡捷,並皆須提示理由解釋或證明,否則不予計分。)

- 1. If for an unknown random variable X with $\mathbb{E}[X]=35$, we also know that $P(X \ge 45)=0.055$ and $P(X \le 25)=0.015$. Find the lower bound of $\mathrm{var}(X)$. (8%)
- 2. Suppose $\{X_1, X_2, \dots, X_n\}$ is a random sample drawn from a Poisson distribution with parameter λ ,
 - (a) Find the maximum likelihood estimator (MLE) for λ . (4%)
 - (b) Please examine the consistency and sufficiency of the MLE. (8%)
- 3. Suppose the joint distribution of random variables X and Y is expressed as

$$f(x,y) = \begin{cases} \exp(-x), & 0 < y < x < \infty, \\ 0, & \text{otherwise.} \end{cases}$$

- (a) Please find P(Y > 5|X < 10). (結果以指數表達即可, 5%)
- (b) Find $\mathbb{E}[X+Y]$.(5%)
- 4. Given a set of random sampled data, {45, 11, 63, 59, 17, 4, 23, 28, 65, 42}, from population, please find an approximately 95% confidence interval for the population median. (10%)
- 5. Let X and Y be two random variables, prove that

$$var(Y) = \mathbb{E}[var(Y|X)] + var(\mathbb{E}[Y|X]). \tag{10\%}$$

注:背面有試題

國立中央大學102學年度碩士班考試入學試題卷

所別:財務金融學系碩士班 甲組(一般生) 科目:統計 共 3 頁 第 2 頁

財務金融學系碩士班 乙組(一般生)

本科考試禁用計算器

*請在試卷答案卷(卡)內作答

6. To test if t-test statistic is appropriate to use for a given population, we conduct an investigation with the following procedure. We randomly draw 1,000 *samples* from this population. Each of these samples has *n* observations drawn without replacement, and the t-statistic for each sample is calculated as

$$t_k = \frac{\bar{x}_k}{\sigma(x_k)/\sqrt{n}}, k = 1,...,1000,$$

where $\{x_k\}$ are the observations in sample k, and 1,000 t-statistics $(t_1, ..., t_{1000})$ are derived. We then compare each of t_k to the critical values of t-test statistic associated with the two-tailed 5% significance level. Suppose 1,000 samples of size n are sufficient to make a correct inference, and we find that 92 of these 1,000 t-statistics are outside the 95% confidence interval. Based on such a finding, if we use t-statistic to test hypothesis on the observations drawn from this population, is it type I or type II error that we are likely to commit, and why? (6%)

7. Suppose we stand at time t=0 and consider the following model for the time-series dynamics of Y_t , t=1,2:

$$Y_1 = \beta Y_0 + u_1,$$

$$Y_2 = \beta Y_1 + u_2,$$

where the subscript represents time. Residual terms u_t satisfy

E(
$$u_t$$
)=0 for t =1,2,
E(u_t)= σ^2 for t =1,2,
E(u_1u_2)= $\sigma_{12}\neq 0$.

 Y_0 is a known number at time t=0. Find $E(Y_2)$ and $Var(Y_2)$. (6%)

- 8. Suppose we need to estimate a linear regression model $Y_i = \beta X_i + \varepsilon_i$, where residual terms ε_i is independent and identically distributed, $E(\varepsilon_i) = 0$, $Var(\varepsilon_i) = \sigma^2$, $Cov(\varepsilon_i, \varepsilon_j) = 0$ if $i \neq j$, i = 1, ..., N.
 - (a) Find the least square estimate of β (denoted as $\hat{\beta}$). (Note: Be sure to explain why your estimator gives the minimal sum of squared errors) (6%)
 - (b) Find $E(\hat{\beta})$ and $Var(\hat{\beta})$. Is $\hat{\beta}$ unbiased? (5%)
 - (c) Suppose now we have another estimator $\widetilde{\beta} = \frac{\sum\limits_{i=1}^{N} Y_i}{\sum\limits_{i=1}^{N} X_i}$. Is $\widetilde{\beta}$ unbiased? Which of $\widetilde{\beta}$ and

 $\hat{\beta}$ is considered a better estimator and why? (6%)

(d) Suppose now $Var(\varepsilon_i) = \sigma_i^2$, where $\sigma_i^2 \neq \sigma_j^2$ if $i \neq j$. Is $\hat{\beta}$ unbiased? What is $Var(\hat{\beta})$? (5%)

國立中央大學102學年度碩士班考試入學試題卷

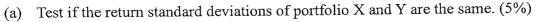
所別:財務金融學系碩士班 甲組(一般生) 科目:統計 共 3 頁 第 3 頁

財務金融學系碩士班 乙組(一般生)

本科考試禁用計算器

*請在試卷答案卷(卡)內作答

9. We need to decide whether the returns of two different portfolios follow the same underlying Normal distribution. Suppose $\{x_1, ..., x_n\}$ and $\{y_1, ..., y_m\}$ are the historical returns of portfolios X and Y, respectively. Please conduct the following tests with $\alpha\%$ significance level. (Be sure to clearly specify the tested hypothesis, the used statistics, and the confidence interval.)



- (b) Suppose we conclude the return standard deviations for two portfolios are the same from (a). Test if the means of returns of portfolio X and Y are the same. (5%)
- 10. Consider the following simultaneous equation system describing the mutual influence between the equilibrium price (p) and the quantity (q) of a product over time:

$$p_t = \beta_1 q_t + \beta_2 x_t + u_t, \quad (1)$$

$$q_t = \gamma p_t + v_t, \qquad (2)$$

where subscript t represents time, x_t is an exogenous variable that affects price, and u_t and v_t are residual terms satisfying

$$\mathbf{E}(u_t) = \mathbf{E}(v_t) = 0$$

$$E(u_t^2) = \sigma_u^2, E(v_t^2) = \sigma_v^2$$

$$E(u_t v_t) = E(u_t x_t) = E(v_t x_t) = 0.$$

Show $Cov(q, u) \neq 0$ and $Cov(p, v) \neq 0$. (6%)

