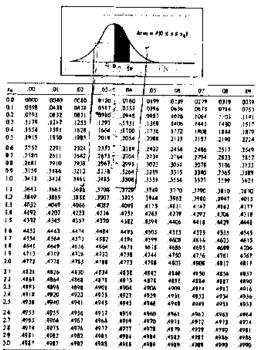

國立中央大學八十五學年度碩士班研究生入學試題卷 前別: 產業經濟研究所 乙組 科目: 乙統計學 共2頁 第一頁

1.(12%) Let a ball be taken at random from a bowl that contains 15 white balls and 5 red balls.

- (1) If it is drawn with replacment, please answer the following questions:
- (3%) a. What is the probability that the fourth white ball is drawn in the sixth random experiment?
- (3%) b. Define a random variable X as the number of experiments executed when the first white ball is drawn.What distribution is X followed? What is the expected number of experiments to have a white ball drawn?
 - (2) If it is drawn without replacement, please answer the following questions:
- (3%) a. What is the probability that the first white ball is drawn in the sixth radom experiment?
- (3%) b. Let Y be the number of white balls drawn in five random experiments. What distribution is Y followed? What is the expected number of white balls drawn in this five random experiments?
- 2.(9%) In testing H_0 : $\mu = 20$ versus H_0 : $\mu > 20$ with $\alpha = 0.05$, based on a sample of n = 30, the sample mean and standard deviation were given as $\bar{x} = 23$ and s = 5.
 - (3%) (1) Calculate β for values of $\mu = 22$, $\mu = 23$, $\mu = 24$ and $\mu = 25$.
 - (3%) (2) Graph the power curve using the results of part (1).
 - (3%) (3) What would you expect to happen if the power curve moves from curve A to curve B? and what would be the stories if it moves from C to D ?

3. (13%) Given the following joint probability distribution


			Х	
		0	1	2
	0	0.05	0.1	0.03
Y	1	0.21	0.11	0.19
	2	0.08	0.15	0.08

(6%) (1) Calculate Cov(X, Y) and $E(X^2Y^3)$, $E[Y - E(Y|X)]^2$

(7%) (2) Find the a and b that minimize the function $E[Y-a-bX]^2$. Given the solutions,

verify that
$$E[Y - E[Y|X]]^2 \le E[Y - a - bX]^2$$

- 4. (16 %) Answer the following questions as concisely as possible :
 - (4%) (1) Under what conditions the probability density function cannot be derived from its distribution function ?(Please point out two conditions rather than two examples.)
 - (4%) (2) Please give one exact example that the Central Limit Theory doesn't apply. Specifically, write down the probability density function of that example and the explanations.
 - (4%) (3) Is the probability density function of a continuous random variable continuous? Please give one example.Is the distribution function of a random variable surly continuous or at least continuous to the right ? Why is that ?
 - (4%) (4) What is the correct criterion to distinguish a random variable continuous or discontinuous? by its probability density function, distribution function or what?

This table is statisfied from Table 1 at Sectional Subject and Formular, by a. Hold (New York, John Wiley 1 Sond, Jac., 1952). Reproduced by permittion of A. Hold and the subject-box, John Wiley & John, Jac.

國立中央大學八十五學年度碩士班研究生入學試題卷

所別:產業經濟研究所 乙組 科目:乙統計學 共工 共工 頁 第二乙頁

5. (20%) Consider the following regression results for the estimated consumption function of the U.S. for the period 1980 to 1991($y \rightarrow personal consumption$ expenditure, x = gross domestic product):

 $y = -231.7951 \pm 0.7194 x$

(94.5275) (0.0217)

where the values in parentheses are the standard errors of the estimated coefficients. (10%) (a) How do you interpret the coefficient 0.7194? Is this value significantly less than one? (10%) (b) What is the F value ? Can you obtain the F value in terms of the coefficient of

determination (R-square)?

6. (20%) Consider the following Cohb-Douglas equation for the agricultural sector of Taiwan for 1958-1972 (Y = real gross product, X2 = labor days, X3 = real capital input and ln is natural logarithm):

ln Y = -3.3384 + 1.4988 ln X2 + 0.4899 ln X3

(2.4495) (0.5398) (0.1020) R-square = 0.8890

where the values in parentheses are the standard errors of the estimated coefficients. The covariance of estimates between In X2 and In X3 is -0.03842.

(10%)(a) Can you conclude that the Taiwanese agricultural sector was characterized by constant return to scale?

Suppose you obtain the regression results in the following way

 $\ln (Y / X2) = 1.7086 + 0.6129 \ln (X3 / X2)$ (0.4159) (0.0933)

R-square = 0.8489

where the values in parentheses are the standard errors of the estimated coefficients.

(10%)(b) Can you conclude that the Taiwanese agricultural sector was characterized by constant

return to scale? (Note: $F_{0.05}(1,12) = 4.75, F_{0.10}(1,12) = 3.18$)

7. (10%) A random variable X follows the poisson distribution if it has the following probability density function:

$$f(x) = \frac{e^{-\theta}\theta^{\gamma}}{x!}$$

where θ is the parameter of the distribution. Using the maximum likelihood (ML) estimation

method, show that the ML estimator of θ is $\hat{\theta} = \sum_{i} x_i / n$ where n is the sample size.

T	p = .55	.60	,65	.70	.75	. KD	.85	.90	.95	.975	.99	.595
1	.158	.325	510	727	1.900	1.376	1.963	3.078	6.314	12.705	31 871	61 657
<u>,</u>	.142	289	445	.617	.816	1 061	1.385	1.856	2,920	4,303	6.965	9.925
ĩ	741	277	424	584	.761	,978	1.256	1.638	2.353	3.182	4,541	5841
4	.134	276	.414	569	.74t	.941	1,199	1.533	2.132	2.776	3,747	4 604
5	.132	267	.40%	.559	.727	.920	1.156	1 476	2.015	2,571	3.365	4 032
6	.131	265	,404	.353	.718	. 9.16	1.134	1.440	1,943	2.447	3.143	3,707
7	.130	.263	402	.549	.711	896	[.][9	1.415	E.895	2.365	2.998] 499
8	.130	.262	.399	.546	. 106	.889	1.108	1.397	1.960	2.306	2.896	3.355
8	.129	.261	.398	.343	,703	883	1.100	1 383	1.813	2.262	2.821	3.250
0	.129	.260	.397	.542	,500	.879	1,093	1.372	1.8L2	2,228	2.764	1.169
1	.129	.263	396	.540	6.97	876	1.088	1 363	1.796	2,201	2.718	3.106
2	.128	.2.59	.395	.539	.695	.873	1.080	1.356	1.782	2.179	2.651	3.055
1	,128	.239	.394	.538	.694	870	1.079	1.350	1.771	I.160	2 650	3.D12
4	.128	.258	.393	.537	.692	.865	1 076	1.345	1,761	2.145	2 6 2 4	2 977
15	.129	.258	.393	536	.691	866	074	1.34L	1.753	2 1 3 1	2.602	2,947
16	.328	258	.392	.535	690	.865	1.071	1.337	1,746	2.120	2.583	2 921
17	.528	.257	192	.534	639	.863	1.069	1 330	1.74D	2.∎L0	2 567	2 898
16	.127	.257	.192	.534	.658	.862	1.067	1.330	3 734	2101	2.552	2.878
19	.121	257	.191	.333	6.83	.861	1.066	1 328	1.729	2 093	2.539	2.861
20	.127	257	.191	.533	.687	,860	064	1.325	1,725	2.086	2.525	2.845

