國立中央大學96學年度碩士班考試入學試題卷 共 2 頁 第 / 頁

所別:資訊管理學系碩士班 丙組 科目:資料結構

1. Let the recursive function Guess be defined as follows:

```
Unsigned Guess (unsigned X, unsigned Y)
  if (Y == 0) return 0;
  else if (Y == 1) return X;
  else
  {
    Z = Guess (X, Y/2);
    return Z*2 + X*(Y%2);
}
```

- (a) Trace Guess (1, 10). (3%]
- (b) Describe the purpose of Guess. (3%)
- (c) Write down the recursive formula of function Guess. (4%)
- 2. Describe how one can use stacks and the push & pop operations to simulate an array's retrieval and storing operations, respectively. (10%)
- 3. Describe the purpose of the following code by tracing it on a list pointed by Head of at least 5 elements. (10%)

```
L = Head;
R = L->Next;
L->Next = NULL;
while (R != NULL)
{
    N = R->Next;
    R->Next = L;
    L = R;
    R = N;
};
Head = L;
```

- 4. Describe the data structure and algorithm for traversing a binary tree in level-order. (10%)
- 5. Add the following numbers one by one from left to right into an initially empty binary search tree.
 - 5 8 1 4 6 0 3 7 9 2
 - (a) Draw the final binary search tree. (5%)
 - (b)Draw the resulting binary search tree after deleting the root from the tree in (a). (5%)

注:背面有試題

所別:資訊管理學系碩士班 丙組 科目:資料結構

- 6. Is Quick Sort always faster than Insertion Sort? Explain your answer. (5 %)
- 7. How many distinct topological orders are there in the following graph? (5 %)

- _
- 8. The following questions are about hashing table.
 - (a) What is collision? (2 %)
 - (b) What is quadratic probing? (2%)
 - (c) What is rehashing? (2%)
 - (d) Does the perfect hashing exist? Explain your answer. (4%)
- 9. Suppose that smaller number node is visited first. According to the following graph,
 - (e) Draw the depth-first spanning tree starting from node 1. (5 %)
 - (f) Write the back edges of the depth-first spanning tree in (a). (5 %)

- 10. A binary tree is stored in an array as follows: $\langle 42 \cdot 29 \cdot 71 \cdot 45 \cdot 43 \cdot 76 \cdot 41 \cdot 70 \rangle$
 - (a) Give the definition of a heap.(5 %)
 - (b) Adjust the binary tree into a heap. You should draw the heaps for each step during the adjustment. (5 %)
- 11. Write an algorithm in pseudo-code to find the kth small element in an array. You are not allowed to presort the array. (10 %)