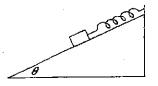
國立中央大學104學年度碩士班考試入學試題

所別:<u>地球科學學系地球物理碩士班 不分組(一般生)</u> 科目:<u>普通物理學 共____頁 第____頁</u> 本科考試禁用計算器 <u>*請在答案卷(卡)內作答</u>


(一) Heat (共25分)

- 1. **Heat flow** (熱流) is the rate of heat energy transfer through a given surface, per unit surface and per unit second. What is the relationship between heat flow, temperature, and thermal conductivity? (10分)
- 2. Along a metal bar, the temperature is $T(x)=x^2$ at distance x in cm along the bar, and that the heat flow is 100 J/s at x=200 cm, what is the constant of proportionality. (15%)

(二) Rotation (共 25 分)

- 1. What is parallel axis theorem? (10 分)
- 2. 若地球對自轉軸的轉動慣量爲*KMR*²,其中*M*爲地球質量、*R*爲地球半徑。由於潮汐對海岸的摩擦作用,地球自轉的速度逐漸減小,每1000萬年周期增加400秒,求潮汐對地球的平均力矩多大?(8分)地球動能的減小相當於摩擦消耗多大的功率?(7分)
- (三) Simple harmonic motion and friction (共 25 分)
 - A block of mass m rests on an incline which makes an angle θ with the horizontal plane (see the right figure). There is friction between the block and the surface. The static friction coefficient μ_s is larger than the kinetic friction coefficient, μ_k . The block is attached to a "massless" spring of spring constant k. In the absence of any forces on the spring, its (relaxed) length would be l.

- (1) We pull on the block and extend the spring till its length is l+x. What is the maximum extension, x_{max} , of the spring for which the block will remain stationary when released? (5 分)
- (2) In this position, show a free body diagram for the block. Indicated all forces that act on the block and give their magnitude. (5 分)

In the following three questions, use the symbol x_{max} .

- (3) In this position, the block is then gently touched at time t=0. It starts moving. For what value of x will the block reach its maximum speed? (5 %)
- (4) As the block moves, the spring will get shorter. At some point in time, t_I , the extension is x. How much work was done by (i) gravity, (ii) the spring force, and (iii) by the friction between t=0 and t_I . (5 %)
- (5) As the block moves up-hill, the spring gets shorter. What is a necessary requirement for the spring to become at least as short as its relaxed length l? (5 \Im)

(四) Magnetic field (共25分)

- (1) What is Biot-Savart law (10 分)
- (2) Two wires, both of length L, are formed into a circle and a square, and each carries current i. Show that the square produces a greater magnetic field at its center than the circle produces at its center. (15 %)