## 國立中央大學 105 學年度碩士班考試入學試題

所別: 環境工程研究所碩士班 甲組(一般生)

共之頁 第一頁

環境工程研究所碩士班 乙組(一般生)

科目: 工程數學

本科考試禁用計算器

\*請在答案卷(卡)內作答

1. (20%) Please show that

$$\mathcal{L}(e^{at}f(t)) = F(s-a),$$

$$\mathcal{L}(t^n f(t)) = (-1)^n \frac{d^n F(s)}{ds^n}.$$

Solve the initial value problem  $y'' + 2y' + y = t \cdot e^{-t}$ , y(0) = 1, y'(0) = 2 using Laplace transform.

2. (25%) Describe in words the similarities and differences between scalars and vectors.

Consider the following velocity vectors:

(i). 
$$q = 2x^2\hat{i} - 2yz\hat{j} - (y^2 + 3)\hat{k}$$

(ii). 
$$\mathbf{u} = \hat{\mathbf{i}} - 4\hat{\mathbf{j}}$$

(iii). 
$$\mathbf{v} = 2y\hat{\mathbf{i}} + 2x^2y^2\hat{\mathbf{j}} - 2x^2yz\hat{\mathbf{k}}$$

(iv). 
$$\mathbf{w} = z^3 \mathbf{\hat{k}}$$

Determine:

- (a) **q** ⋅ **u**
- (b)  $\mathbf{v} \times \mathbf{w}$
- (c) |q|
- (d) show the gradient, divergence, and curl of  ${\bf q}$  and  ${\bf v}$ . In each case, state whether your answer is a scalar or vector. What is your justification?
- 3. (30%) Consider the following 2-step reaction system:

$$A \stackrel{k_A}{\rightarrow} B$$

$$B \stackrel{k_B}{\rightarrow} C$$

Please obtain the expressions of concentrations as a function of time

for A, B and C. (Hint: 
$$\frac{d[A]}{dt} = -k_A[A]$$
).

注:背面有試題

## 國立中央大學 105 學年度碩士班考試入學試題

所別: 環境工程研究所 碩士班 甲組(一般生)

環境工程研究所 碩士班 乙組(一般生)

共之頁 第之頁

科目:

工程數學

本科考試禁用計算器

\*請在答案卷(卡)內作答

4. (25%) An industrial process operates on a batch basis and produces a liquid waste at the rate of 100 gallon/day. It is desired to design a stirred batch reactor to treat the waste by chemical oxidation with KMnO4. Preliminary bench studies indicate a first-order decay of the waste so that r(C) = -kC where k = 3.5/day. It takes 4 hours to empty the treated waste products from the tank at the end of a reaction period and refill the tank with a new batch of waste. Surplus 50 gallons tanks are available as treatment vessels. Please determine the number of 50 gallons vessels required to treat 100 gallon/day if it is desired that the waste concentration be reduced to 10% of its original value in each treatment. (Hint: ln(10) ≅ 2.3)

注:背面有試題