國立中央大學110學年度碩士班考試入學試題

所別: 機械工程學系碩士班 製造與材料組(一般生)

担頁第↓頁

機械工程學系光機電工程 碩士班 光機組(一般生)

能源工程研究所 碩士班 不分組(一般生)

科目: 工程數學

本科考試可使用計算器,廠牌、功能不拘

*請在答案卷(卡)內作答

※計算題需計算過程,無計算過程者不予計分

1. Find the solutions for ordinary differential equations. (ODE)

(a) (5%) Find the solution for y'' - 3y' - 4y = 0, y(0) = 2, y'(0) = 1

(b) (5%) Find the solution for $x^2y''+2xy'-6y=0$, y(1)=0.5, y'(1)=1.5

(c) (5%) Find a basis of solutions by the Frobenius method of the following ODE:

$$(x+1)^2y'' + (x+1)y' - y = 0.$$

2. Modeling an RLC-circuit and obtain steady-state current.

Kirchhoff's Voltage Law says that the voltage drop in a closed-loop circuit is zero.

(a) (5%) Based on this law, model the current, i(t), for the circuit shown in the following figure.

(b) (5%) Obtain the "steady-state" current in the RLC-circuit when R=50 Ω (Ohm), L=30 H (Henry), C=0.025 F (Farad), and E=200 sin(4t) V (Volt)

Hint: The voltage drop for a current i(t) across a resistor of resistance R is Ri(t), across an inductor of inductance L is $L\frac{di}{dt}$, and across a capacitor of capacitance C is Q/C, where Q is the charge and the relation between Q(t) and i(t) is $Q(t) = \int i(t)dt$.

3. (5%) Determine the existence and uniqueness of the solutions to the system

$$\begin{bmatrix} 0 & 3 & -6 & 6 & 4 \\ 3 & -7 & 8 & -5 & 8 \\ 3 & -9 & 12 & -9 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -5 \\ 9 \\ 15 \end{bmatrix}$$

4. (5%) The traffic flow problem can be described by the following table. Please determine the general flow pattern for the network

Intersection	Flow in	=	Flow out
Å	300+500	= /	x_1+x_2
	$x_2 + x_4$	=	300+ x ₃
Ċ	100+400	=	x ₄ +x ₅
D	$x_1 + x_5$	=	600

注意:背面有試題

國立中央大學 110 學年度碩士班考試入學試題

所別: 機械工程學系碩士班 製造與材料組(一般生)

共之頁 第2頁

機械工程學系光機電工程 碩士班 光機組(一般生)

能源工程研究所 碩士班 不分組(一般生)

科目: 工程數學

本科考試可使用計算器,廠牌、功能不拘

*請在答案卷(卡)內作答

- 5. (a) (3%) Let $A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$, $u = \begin{bmatrix} 6 \\ -5 \end{bmatrix}$, and $v = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$, Are u and v eigenvectors of A?,
- (b) (4%) Show that 7 is an eigenvalue of matrix A in (a), and find the corresponding eigenvectors.
- (c) (8%) Find a formula for A^k , $k \ge 1$ (Hint: given that $A = PDP^{-1}$, P and D matrix can be obtained from eigenvectors and eigenvalues of matrix A)
- **6.** (10%) Let f(t) be a periodic function, f(t) = f(t+p) with period p. Denote L[f(t)] as the Laplace transform of f(t). Prove $L[f(t)] = \frac{\int_0^p e^{-st} f(t) dt}{1 e^{-sp}}$.
- 7. Definition: The Fourier series expansion of a function f(t) is given by

$$f(t) = a_0 + \sum_{n=1}^{\infty} [a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t)], \omega_0 = \frac{2\pi}{T}.$$
 (1)

Function f(t) is given by $f(t) = \begin{cases} 0, 0 \le t < \pi \\ 2, \pi \le t < 2\pi \end{cases}$ and $f(t) = f(t + 2\pi)$. Expand f(t) by Fourier series.

- (a) (3%) Find the (fundamental) period T of f(t).
- **(b)** (4%) Find the values of a_0 , a_1 , a_2 , a_3 , b_1 , b_2 , b_3 .
- (c) (3%) Will the Fourier series converge to f(t)? Explain your reasons within 30 words.
- (d) (5%) Can one obtain identical Fourier series of any function g(t) by using 2T and T in Equation (1)? Explain your reasons within 30 words.

8. It is given grad
$$f = \nabla f = i \frac{\partial f}{\partial x} + j \frac{\partial f}{\partial y} + k \frac{\partial f}{\partial z}$$
, div $\vec{v} = \nabla \vec{v} = \frac{\partial v_1}{\partial x} + \frac{\partial v_2}{\partial y} + \frac{\partial v_3}{\partial z}$, and curl $\vec{v} = \nabla \vec{v} = \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ v_1 & v_2 & v_3 \end{vmatrix}$, where f and v_1 , v_2 and v_3 are the scalar functions of x , y and z .

states "Gradient fields are irrotational. That is, if a continuously differentiable vector function is the gradient of a scalar function f, then its curl is a zero vector."

$$\underline{\nabla(\nabla \times \vec{v}) = 0} \tag{3}$$

states "the divergence of the curl of a twice continuously differentiable vector function v is zero."

- (a) (6%), (6%) Please first prove Equations (2) and (3), respectively
- (b) (6%), (7%) Please give their (Equations (2) and (3)) matching engineering (or physical) examples with discussion, respectively.