國立中央大學八十七學年度碩士班研究生入學試題卷

所别: 資訊工程研究所 不分組 科目: 線性代數 共 / 頁 第 / 頁

※ 請務必按照題號次序寫在答案紙上。

- 1. (40 %) True and False. (一定要有説明或反例)
 - (a) Two linear systems Ax = b and Bx = c are equivalent then A and B are row equivalent.
 - (b) If a linear system has no free variables, then it has a unique solution.
 - (c) Λ is a square matrix. If linear transformation $x \mid \rightarrow Ax$ is onto, then $x \mid \rightarrow Ax$ is one-to-one.
 - (d) Let T be a linear transformation from R^3 to R^m . If vectors a, b, c are linearly independent, then T(a), T(b), T(c) are linearly independent.
 - (e) The nonempty subset of a linear-dependent vector set is linearly dependent.
 - (f) $n \times m$ matrix A has n distinct eigenvalues if and only if A is diagonalizable.
 - (g) If matrix A is diagonalizable, then the columns of A are linearly independent.
 - (h) If $n \times n$ matrix A has n linear-independent eigenvectors, then so do both A^{T} and A^{-1} .
- 2. (10 %) Find the c_1 , c_2 , and c_3 in the equation $c_1\begin{bmatrix} 0\\1\\-3\end{bmatrix} + c_2\begin{bmatrix} 5\\2\\-1\end{bmatrix} + c_3\begin{bmatrix} 3\\1\\2\end{bmatrix} = \begin{bmatrix} -1\\0\\1\end{bmatrix}$.
- 3. (10 %) Explain why the linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$
 - (a) is onto, then $n \ge m$.
 - (b) is one-to-one, then $n \le m$.
- 4. (10 %) Find a matrix A such that the transformation $x \mapsto Ax$ takes $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 7 \end{bmatrix}$ into $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$, respectively.
- 5. (10 %) Let A and B be $n \times n$ matrix. Which one of the two statements: (i) $\det AB = \det A \det B$ and (ii) $\det(A+B) = \det A + \det B$ is wrong? What conditions on the matrices and matrix addition make the wrong statement to be right? Note that the "det" is determinant.
- 6. (10 %) Find bases for Row A, Col A, and Nul A, where $A = \begin{bmatrix} 1 & 1 & 3 & 3 & 1 \\ 2 & 3 & 7 & 8 & 2 \\ 2 & 3 & 7 & 8 & 3 \\ 3 & 1 & 7 & 5 & 4 \end{bmatrix}$.
- 7. (10 %) Find a QR factorization of matrix $\begin{bmatrix} 1 & 3 & 5 \\ -1 & -3 & 1 \\ 0 & 2 & 3 \\ 1 & 5 & 2 \\ 1 & 5 & 8 \end{bmatrix}$, where columns of Q form an

orthonormal basis for Col A.