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Images from the OSIRIS scientific imaging system onboard Rosetta show that the nucleus
of 67P/Churyumov-Gerasimenko consists of two lobes connected by a short neck.
The nucleus has a bulk density less than half that of water. Activity at a distance from
the Sun of >3 astronomical units is predominantly from the neck, where jets have been
seen consistently. The nucleus rotates about the principal axis of momentum. The surface
morphology suggests that the removal of larger volumes of material, possibly via explosive
release of subsurface pressure or via creation of overhangs by sublimation, may be a
major mass loss process.The shape raises the question of whether the two lobes represent
a contact binary formed 4.5 billion years ago, or a single body where a gap
has evolved via mass loss.

S
ince 23 March 2014 at a distance of 5 mil-
lion km, the Optical, Spectroscopic, and In-
frared Remote Imaging System [OSIRIS (1)]
onboard the Rosetta spacecraft has been
regularly imaging the nucleus of comet

67P/Churyumov-Gerasimenko (hereafter 67P)
and its dust and gas environment in 25 broad-
and narrow-band filters covering the wavelength
range 240 to 1000 nm through its narrow- and
wide-angle cameras, NAC and WAC [details in
supplementary text 1 (SM1)]. The data thus far
have provided a view of this comet at variance
with our earlier knowledge [reviewed in (2)].

Bulk properties and rotation

The rotation period determined from early, un-
resolved observations was 12.4043 T 0.0007 hours
(3), implying a decrease of the spin period by
0.36 hours during (or since) the 2009 perihelion
passage, consistent with the range predicted for
the 2015 perihelion passage (4).
The nucleus was first resolved in the NAC

(>1 pixel) on 16 June 2014, at a distance of
192,000 km, and the resolution has improved
to 0.15 m/pixel at a distance of 10 km at the time
of writing.
Starting in August 2014, when the comet was

well enough resolved, a more accurate approach
based on tracking stereo landmarks was used to

determine the direction of the spin axis. Three
different algorithms led to a prograde spin axis
at RA = 69.3° T 0.1°, Dec = 64.1° T 0.1°, in good
agreement with (3). We found no obvious
evidence for complex rotation, and the current
result constrains any motion of the spin axis to
<0.3° over ~55 days. The lack of measurable
change over such a short time scale is not yet a
useful constraint on torques.
Early shape models of the nucleus were con-

structed from images acquired throughSeptember
2014, with a best resolution of 0.8m/pixel. Stereo-
photogrammetry [(5) and references therein] and
stereophotoclinometry (6) yielded high-resolution
(5 to 10m) shapemodels (Fig. 1). The shape has a
very pronounced bilobe appearance, reminiscent
of comets 8P/Tuttle (7) and 103P/Hartley 2 (8).
The lobes in these two comets are aligned rough-
ly along their longest axes, whereas in 67P the
alignment appears more nearly perpendicular
to the axes of the individual lobes, and the axis
of rotation is closer to parallel to the long axes
of the lobes. From the three-dimensional shape
models, the larger lobe (the body) has a size of
about 4.1 × 3.3 × 1.8 km, and the smaller lobe (the
head) is 2.6 × 2.3 × 1.8 km; they are connected by
a short “neck.” The total volume, estimated by
adding limb scans from the microwave instru-
ment onboard Rosetta (MIRO) to fill in the un-

mapped portions around the southern (negative)
rotational pole, is 21.4 T 2.0 km3.
The current shape model is not complete be-

cause the obliquity of the comet’s rotational axis
(52°) currently puts the southern (negative) pole
in permanent shadow (it will have continuous
sunlight at perihelion, 13 August 2015; equinox
in May 2015). The volume of the model yields a
mean density of 470 T 45 kg/m3 when combined
with the mass, 1.0 × 1013 kg, determined by the
Radio Science Investigation (RSI) instrument
(9). Although the principal axes of the shape
model are still uncertain because of the unmapped
portion of the nucleus, they are consistent with
simple rotation about the axis of maximum mo-
ment of inertia, assuming homogeneous density.
The determined density implies high porosity, in
the range of 70 to 80%depending on the adopted
dust-to-ice mass ratio, or equivalently the bulk
density for a solid mixture of ice and dust, which
we assume to be 1500 to 2000 kg/m3.
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This low density confirms previous results
for other comets based on indirect and less pre-
cise determinations, mostly from modeling non-
gravitational accelerations but also including the
breakup of comet D/Shoemaker-Levy 9 (1993 F2),

the fallback under gravity of the Deep Impact
ejecta, and the lower limit on porosity (75%) of
the upper 1 to 10 m from the faintness of the
impact flash of Deep Impact [e.g., (10–13); review
in (14)]. In fact, the mass is almost the same as
deduced from the nongravitational acceleration
but with larger uncertainty (10). Thus, we now
constrain the porosity of a cometary nucleus even
more tightly. The agreement between the axis of
rotation and the axis of maximum moment of
inertia reinforces the concept of weakly bonded
icy dust aggregates, with porosity at small scales
relative to the size of the nucleus (rather than large
voids). This conclusion is further strengthened by
the very low strength (10 Pa) deduced by (15).
We have calculated the gravitational and cen-

trifugal forces on the same shapemodel. As shown
(Fig. 2), the gravitational potential varies by less
than a factor of 2. The centrifugal force varies
from negligible to one-third of the gravitational
force. However, the surface slope relative to local
gravity varies markedly, with many areas ex-
ceeding 45° (Fig. 2). Escape velocity at the sur-
face is poorly defined because nuclear rotation
causes the gravitational acceleration to vary by a
large factor in the time taken to move 1 nuclear
radius. For a sphere with the same density and

volume (radius = 1.72 km), the escape velocity
would be 0.9m/s, roughly three times the velocity
deduced via the same approximation for comet
103P/Hartley 2 (16).
67P’s two main lobes show considerable mor-

phological diversity (15), and the neck is different
from both. Geomorphological regions are identi-
fied in Fig. 3 [see (15) for more detail] and, fol-
lowing the ancient Egyptian theme of the Rosetta
mission, they are named for Egyptian deities. The
entire nucleus is dark, yielding a geometric albedo
of the entire nucleus of only 5.9 T 0.2% at 550 nm,
similar to that of comet 9P/Tempel 1 (17). Despite
the extreme morphological diversity, colorimetry
of the nucleus is remarkably uniform, except in
the Hapi region on the neck (SM2). Whether this
is due to redeposited material on both lobes or
implies that both lobes are intrinsically similar is
still an open question.

Activity and its source

OSIRIS has detected the presence of a dust coma
since the pronounced outburst between 27 and
30 April 2014, or even earlier (18). We detected
resolved features in the coma (SM2) in longWAC
exposureswith the 610-nm filter (SM1) at the end
of July 2014, when the comet was 3.7 AU from
the Sun and the spacecraft distance was 3000 km.
Most of the activity was unambiguously coming
out of the transition region between the small
and large lobes of the nucleus, the Hapi region, or
very close to it. This was consistent with ground-
based observations of coma structures over the
last two orbital periods, which implied an active
region at high northern (positive) latitude (19).
When the spacecraft distance dropped to 100 km
(resulting in a resolution of 1.8 m/pixel in NAC,
10 m/pixel in WAC), it was possible to localize
the active sources by inversion of the jets. Most
of the jets arose fromHapi, at about +60° latitude
(Fig. 4), although we found other minor active
spots on both lobes of the nucleus (SM3). This
major coma feature presents a diurnal variation
of intensity due to changing insolation condi-
tions and observational geometry: A planar fan-
like jet appears brighter and more focused when
viewed edge-on rather than face-on.
To investigate why the activity is dominant

above Hapi, we calculated the energy incident
on all parts of the nucleus over one rotation on
6August 2014. According to themodel as applied
to the shape model of 67P (20), self-heating by
thermal reradiation from the head and the body
provides extra heating to the region of the neck
and at the time of peak jet activity, and parts of
Hapi and Hathor receive 10% higher flux than
other regions. However, at this point in the orbit,
the rotational axis is oriented so that the neck
receives slightly less energy over a rotation than
do other parts of the nucleus (Fig. 5). This suggests
a large compositional (e.g., type of ice) or struc-
tural (e.g., depth of ice) difference in Hapi relative
to other regions. More detailed models that take
sublimation and thermal inertia into account are
needed to clarify the situation. Because of the
large obliquity of the rotational axis with respect
to the orbital plane, it is likely that the currently
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Fig. 1. Stereophotogrammetric shape models
of comet 67P. The blue arrow indicates 67P’s
rotation axis z; the red and green arrows display
its equatorial x and y axes (x according to the
current zero-longitude definition). If the nucleus
is homogeneous in density, the axis of minimum
moment of inertia is consistent with being in the
equatorial plane.

Fig. 2. Gravitational field. Left: The effective gravitational potential at the surface, including the
centrifugal term due to rotation of the nucleus, is shown looking toward the neck from an intermediate
latitude in the northern (positive) hemisphere (between the blue and red arrows in Fig. 1). Right: The
slope of the terrain relative to local gravity.

Fig. 3. Geomorphological map of comet 67P. Left: Region definition for one face of 67P, showing the
Seth region on the body and the smooth Hapi region on the neck. Other regions are defined in more
detail by (15). Right: Regional definition looking from the body (foreground) across to the head.
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active northern (positive) hemisphere has evolved
very differently than has the southern (negative,
thus far only partially mapped) hemisphere.

Nuclear properties and geomorphology

In the Seth region, extending around the neck
from one end of Hapi (Fig. 3), we observe a
closely packed system of well-defined pits and
depressions with remarkably flat floors. The
walls of these features show linear structures
that are parallel to their floors and extend lat-
erally hundreds of meters, indicating a consol-
idated structure, but they also exhibit vertical
striations. Some of these quasi-circular pits are
minor sources of activity (e.g., Fig. 6). They are
similarly seen in cliffs and are possibly erosion
features related to activity. They range from 50
to 300 m in diameter and 10 to 200 m in depth.
We find other pits everywhere on the nucleus.
Such pits have been observed on comets 81P/

Wild 2 and 9P/Tempel 1, and those were inter-
preted as activity-related features rather than
impact craters because of their flat size distri-
bution (21). The pits on the nucleus of 67P share
a similar morphology, although the active ones
tend to have a depth/diameter ratio close to 1,
whereas the inactive pits are much shallower, se-
emingly filledwith finedust andmultiple boulders.
It is not clear whether these pits are inactive or
whether they will “wake up” when they start re-
ceiving more illumination.
The head is characterized by impressive cliffs

and sets of aligned linear structures >500 m in
length exposed at the cliff facing the neck (Hathor)
(Fig. 7). This cliff is opposite Seth, which has a
different character. Fracturing is seen over the
nucleus at all scales, except where the nucleus
appears to be covered with smooth deposits.
Small-scale fracturing appears more scattered
than the larger-scale linear structures. Thermal
shock may be a plausible mechanism given the
very large variation in temperatures seen by
cometary nuclei; the near-surface region of 67P
undergoes fluctuations of up to 150 K each
orbital period, much larger than those invoked
to explain linear structures on Eros (22). The
surface morphology strongly suggests that the
loss of larger volumes of material, possibly via
the explosive release of subsurface gas pressure
or creation of overhangs by sublimation, may
be a major mass loss process for the nucleus.
We observe irregular quasi-linear features at

the Anuket-Hathor interface, which we infer to
be cracks in the surface of the neck (Fig. 7). These
cracks include ones that are roughly parallel to
the neck. We note that within the Hapi region
there is also an open crack, which is similarly
aligned (Fig. 7) and extends well into Anuket.
The fact that they are more or less parallel and
across the neck suggests that they may be rel-
ated to each other and to large-scale phenomena
on the nucleus, such as flexure between the head
and the body.
There are also clusters of small, bright spots

(0.5 to 1 m), which might be ice-rich, and there
are both groups and isolated examples of much
larger clumps (up to 30 m).
Finally, we have found in several places on the

nucleus, particularly on very steep slopes, a feature
that we colloquially term “goosebumps” (Fig. 8).
The bumps themselves exhibit a characteristic
scale of about 3 m. Although we do not yet have
an interpretation of these features, the fact that
a single characteristic scale is present may be
an important clue to formation processes, as
many of the possible processes have characteris-
tic scales.

The origin of
67P/Churyumov-Gerasimenko

One key question about the origin of 67P is
whether its nucleus is a primordial planetesimal
or was formed from a much larger planetesimal.
To address this, we must ask how the present
67P nucleus evolved since it formed eons ago.
Two modes of formation of original planet-

esimals in the outer parts of the solar system
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Fig. 4. Jets. Jets from the Hapi region as observed
on 23 September 2014.

Fig. 5. Map of energy input. Left: A map looking at the northern (right-hand rule, positive) pole of 67P
showing the total energy received from the Sun per rotation on 6 August 2014. The energy received
includes thermal illumination by the surfaces of the comet itself. The base of the neck (Hapi) receives
~15% less energy than the most illuminated region, 3.5 × 106 J m−2 (per rotation). If self-heating were not
included, the base of the neck would receive ~30% less total energy. Right: Similar to the left panel but
showing total energy received over an entire orbital period in J m−2 (per orbit). This heating varies by only
~50% over the entire surface. Although not shown here, the opposite hemisphere receives essentially the
same energy, but at a higher rate over a shorter time.

Fig. 6. Active pits detected in Seth region. NAC image acquired on 28 August 2014. Distance to the
comet, 60 km; resolution, 1 m/pixel. Enhancing the contrast (right panel) shows fine structures in the
shadow of the pit, interpreted as fine jets arising from the pit.



are well developed: hierarchical accretion (23)
and clumping of “pebbles” due to gas-dust insta-
bilities. In both cases, accretional velocities were
likely very low. The pebble swarms caused by the
dynamical instabilities may form objects as large
as 102 to 103 km or as small as the 67P nucleus
(24), although the goosebumpsmentioned above
suggest that a smaller scale could be important.
Small objects could also form later as individual
or reaccreted fragments produced by collisions
involving large transneptunian objects (25), but
these may be different from the small, original
planetesimals, having experienced the radioactive
heating of their large parent bodies and the
impacts whereby they were ejected.
The amount of previous erosion of the 67P

nucleus depends on the dynamical age of the
comet—that is, the number of orbits it has per-
formed as a member of the Jupiter family after
its capture from the transneptunian reservoir
(SM4). Unfortunately, this number is unknown
and will remain so, because in the presence of
frequent close encounters with Jupiter inducing
strong orbital perturbations, the dynamical evo-
lution of Jupiter family comets is strongly cha-

otic. Thus, the orbital history of 67P can be traced
back past a close encounter in 1959 (minimum
distance from Jupiter = 0.05 AU) [(26, 27); see
(28) and SM4 for sample calculations] but not
much further.
A key question that Rosetta will address dur-

ing the escort phase of themission iswhether the
two lobes of the nucleus are separate cometesimals
or whether the neck region has been carved out
by erosion. If the head and the body turn out to
be very different in composition or internal struc-
ture, this would argue for the idea that they are
original cometesimals. If they are similar in com-
position and structure, the conclusion is less
clear-cut. The two lobes, head and body, could
still be separate cometesimals that formed at
essentially the same heliocentric distance and
time. Whether the neck could also be the result
of erosion of a more convex body over many
orbital revolutions remains to be clarified. Our
study of energy input described above shows
that this is not enough focused to the neck
(SM5), but the question of whether fragmenta-
tion can still be sufficiently localized to cause
the carving remains unresolved.

Some key features relevant to the formation
are the high porosity implied by the bulk den-
sity (SM6), the pristine composition evidenced
by the large abundance of CO (29), and the
possible evidence of fracturing in the head and
neck region (SM7). The primordial accretion
model seems consistent with all observations.
The scenario of colliding large bodies seems to
require more special circumstances, tending to
make it less attractive but still viable.
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Fig. 7. Nucleus close-ups. Top left: The Hathor cliff face is to the right in this view. The aligned linear
structures can be clearly seen.The smooth Hapi region is seen at the base of the Hathor cliff. Boulders are
prevalent along the long axis of the Hapi region. Bottom left and right: Crack in the Hapi region. The left
panel shows the crack (indicated by red arrows) extending across Hapi and beyond.The right panel shows
the crack where it has left Hapi and is extending into Anuket, with Seth at the uppermost left and Hapi in
the lower left.

Fig. 8. Goosebumps. Characteristic scale of all the bumps is ~3 m, extending over >100 m. This
example is in the active pit in the Seth region.
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