台灣聯合大學系統102學年度碩士班招生考試命題紙 共2頁第1頁

科目: 近代物理(2003)

校系所組:中央大學光電科學與工程學系照明與顯示科技碩士班 交通大學電子物理學系(丙組)

交通大學物理研究所

清華大學物理學系

清華大學先進光源科技學位學程(物理組)

清華大學材料科學工程學系(乙組)

陽明大學生醫光電研究所(理工組)

1. The Hamiltonian of an axially symmetric quantum rotator is

$$H = \frac{L_x^2 + L_y^2}{2I_1} + \alpha L_z$$

- (a). What is the energy spectrum of this system? Sketch the energy levels. (5 points)
- (b). Calculate $\langle l, m_1|H|l, m_2\rangle$ where l is the quantum number for angular meametum operator \vec{L}^2 , and $m_{1(2)}$ is the quantum number for L_z . (5 points)
- (c). Use raising $(L_+ = L_x + iL_y)$ or lowering $(L_- = L_x iL_y)$ operator to construct the (un-normalized) eigenfunctions of H for l = 1, m = -1, 0, 1. (5 points)

- * The spherical harmonics for l=1, m=1 is $Y_{1,1}(\theta,\phi)=\langle \theta,\phi|l=1, m=1\rangle=Ae^{i\phi}\sin\theta$. * $L_{\pm}=\pm\hbar e^{\pm i\phi}(\frac{\partial}{\partial\theta}+i\cot\theta\frac{\partial}{\partial\phi})$.
- 2. Generalized uncertainty relation is

$$(\Delta \hat{A})^2 (\Delta \hat{B})^2 \ge (\frac{1}{2i} \langle [\hat{A}, \hat{B}] \rangle)^2 \tag{1}$$

where the uncertainty of the operator \hat{A} is defined as: $\Delta \hat{A} \equiv \hat{A} - \langle \hat{A} \rangle$.

- (a). Prove the commutator between the position operator \hat{x} and momentum operator \hat{p} is given by $[\hat{x},\hat{p}]=i\hbar$. Use this result and the generalized uncertainly relation to explain why one can not accurately measure both the position and momentum of a quantum particle at the same time. (10 points)
- (b). Can one accurately measure both \vec{L}^2 and L_z at the same time? (where \vec{L}^2 is the square of the angular momentum operator \vec{L} and L_z is the z-component of \vec{L}) Why? Or why not? Please explain your reason in terms of the commutator $[\vec{L}^2, L_z]$. (10 points)

台灣聯合大學系統102學年度碩士班招生考試命題紙 共2頁第2頁

科目:近代物理(2003)

校系所組:中央大學光電科學與工程學系照明與顯示科技碩士班

交通大學電子物理學系 (丙組)

交通大學物理研究所

清華大學物理學系

清華大學先進光源科技學位學程(物理組)

清華大學材料科學工程學系(乙組)

陽明大學生醫光電研究所(理工組)

3. A quantum particle in an one-dimensional infinite square well with potential V(x) = 0 for -a/2 < x < a/2 and $V(x) = \infty$ for |x| > a/2. The particle has an initial wave function

$$\Psi(x,t=0) = \frac{1}{\sqrt{3}}(\Psi_1(x) + \sqrt{2}\Psi_2(x)) \tag{2}$$

where $\Psi_1(x)$, $\Psi_2(x)$ are the stationary wave functions of the ground state and first excited state of the system with eigenenergy E_1 , E_2 , respectively.

- (a). Find $\Psi_1(x)$, $\Psi_2(x)$ and their corresponding eigenenergies E_1 and E_2 . (4 points)
- (b). Calculate $|\Psi(x,t)|^2$, show that it oscillates in time and find out the oscillation frequency in terms of $\omega \equiv \pi^2 \hbar/(2ma^2)$. (4 points)
 - (c). Compute $\langle x \rangle(t)$ and $\langle p \rangle(t)$. (4 points)
 - (d). What are the probabilities of finding the particle at ground state (P_1) and first excited state (P_2) ? (3 points)
- 4. (a) Give one example for bosons and one example for fermions. (5 points) (b) Derive the "Pauli exclusion principle" by constructing two-fermion wave functions. (10 points)
- 5. What are the spin singlet and triplet states for electrons, respectively? Assign the quantum number s and s_z to each case. (10 points)
- 6. (a) Express the first order correction to the energy due to perturbation. No proof is necessary. (5 points) (b) Give one example that the degeneracy is broken by perturbation. (5 points)
- 7. Explain briefly the following terms: (a) graphene; (b) dark energy (c) topological insulators (d) Higgs boson (e) iron-based superconductors. (3 points each)

