
台灣聯合大學系統 103 學年度碩士班招生考試試題 共_1_頁第 1_頁

類組: 物理類 科目: 應用數學(2001)

※請在答案卷內作答

- 1. (10%) If a vector field \mathbf{v} is expressed as $\mathbf{v} = \boldsymbol{\omega} \times \mathbf{r}$, where $\boldsymbol{\omega} = \omega_1 \hat{\mathbf{i}} + \omega_2 \hat{\mathbf{j}} + \omega_3 \hat{\mathbf{k}}$ and \mathbf{r} is the position vector in an orthogonal coordinate system with unit vectors $\hat{\mathbf{i}}$, $\hat{\mathbf{j}}$, and $\hat{\mathbf{k}}$. Determine, showing all the work, the curl of the vector field \mathbf{v} .
- 2. (15%) Let $F = \frac{z\hat{\mathbf{j}} y\hat{\mathbf{k}}}{y^2 + z^2}$. Please answer the following questions:
 - (a) (5%) Calculate, showing all the work, $\nabla \times \mathbf{F}$.
 - (b) (10%) Evaluate the integral $\oint \mathbf{F} \cdot d\mathbf{r}$ around any closed loop surrounding the origin.
- 3. (25%) Let $A = \begin{vmatrix} 1 & -1 & 2 \\ 5 & -5 & 2 \\ 4 & -6 & 4 \end{vmatrix}$.
 - (a) (8%) Find the eigenvalues of A.
 - (b) (10%) Find a maximal set of linearly independent eigenvectors of A.
 - (c) (7%) Is the matrix A diagonalizable (Yes or No)? If yes, find P such that $D = P^{-1}AP$ is diagonal. If not, explain your answer based on the results obtained in (a) and (b).
- 4. (5%) Determine the first three expansion terms of the Legendre series of a function f(x) given by $f(x) = \begin{cases} 1, & -1 < x < 0 \\ 0, & 0 < x < 1 \end{cases}$
- 5. (10%) Evaluate the integral, $J = \int_{V} e^{-r} \left(\nabla \cdot \frac{\hat{r}}{r^2} \right) d\tau$, where V is a sphere of radius R centered at the origin, by the method of integration by part.
- 6. (10%) Find the general solution of the ordinary differential equation, $(x \ln x) y' + y = \ln x$.
- 7. (10%) Find the exponential Fourier transform of the following f(x) and write f(x) as a Fourier integral.

8. (15%) (a) Show that the Laplace transform of $f(t) = te^{3t}$ is $F(s) = \frac{1}{(s-3)^2}$. (b) By using Laplace transform, solve the differential equation, $y'' - 6y' + 9y = te^{3t}$, $y_0 = 0$, $y'_0 = 5$.

