類組: 化學類 科目: 分析化學(1005)

共____頁第___頁

耳	逐速題	(答案請	填於答案卡,	答錯不倒扣,	每題 2.5 分,	共 100 分)	
1.			ass of NaCH3CO2 2.0343 g/mol)	contained in 500	0 mL of a 0.1500	M NaCH3CO2 soluti	on.
	(A) 9	014.3 μg	(B) 283.4 g	(C) 24.61 μg	(D) 6.153 g	(E) 24.61 g	
2.				rt % hydrogen per xide is 1.135 g/cn		34.0147) solution. Tl	he
	(A) 7	7.77 M	(B) 0.0100 M	(C) 0.100 M	(D) 10.0 M	(E) 8.82 M	
3.					(Mg atomic mass: 0^{-2} M (D) $1.2 \times$	= 24.30). 10 ⁻⁵ M (E) 4.9 × 1	$0^{-2} M$
4.	(A) d (B) d (C) d (D) d	elivering 3 elivering 1 elivering 1 elivering 5	35.50 mL of titrar 5.40 mL of titrar 8.50 mL of titran 5.40 mL of titrant	at with a 50 ± 0.05 at with a 25 ± 0.03 with a 25 ± 0.03	mL class A buret mL class A buret mL class A buret		
5.					aining 139.32 g sa er of significant fi	nd, 34.99 g gravel, a gures.	nd
	(A) 1	84 g	(B) 183.7 g	(C) 183.68 g	(D) 184.0 g	(E) 183.682 g	
6.	(A) Gro		(B) Internal e	rror (C) Sy	educed by better te stematic error	chnique.	
7.	results this da	were obta ta set?		nalyses the techni		ore sample. The foll the degrees of freed	

8. Calculate the overall standard deviation if the analytical standard deviation is 6% and the sampling standard deviation is 4%.

(D) 7

(A) 6.3 %

(A) 1

(B) 8.2 %

(C) 6

(B) 5

(C) 7.2 %

(D) 5.3 %

(E) 4

(E) 4.5 %

注意:背面有試題

9.	An ore sample was analyzed for its Fe content. Student A analyzed the sample a total of six times
	and her results had a standard deviation of 1.33. The same sample was analyzed five times by
	Student B and his results had a standard deviation of 3.42. To determine if their standard
	deviations are similar, they perform an F test. The calculated F value is

(A) 6.61

(B) 0.38

(C) 2.57

(D) 0.151

(E) 9.92

10. Student's t is a statistical tool used most frequently to

I. express confidence intervals.

II. compare results from different experiments.

III. evaluate the probability of an experimental value agreeing with a "known" value.

IV. determine if a questionable data point should be discarded.

(A)I

(B) II

(C) I and II

(D) I, II, and III

(E) I, II, III, and IV

11. Which of the following is/are NOT a way to demonstrate the accuracy of a method?

I.Determine the limit of detection for the method

II. Analyze a certified reference material in a matrix similar to the sample

III. Compare the results of two or more different analytical methods

IV. Analyze a blank sample spiked with a known amount of analyte in the same matrix as the sample

(A) IV

(B) II and III

(C) I and III

(D) III

(E) I

12. Which acid is the strongest?

(A) acetic acid, pKa = 4.756

(B) benzoic acid, pKa = 4.202

(C) cyanoacetic acid, pKa = 2.472

(D) phenol, pKa = 9.997

(E) formic acid, pKa = 3.744

13. Which statement regarding galvanic cells is FALSE?

(A) Galvanic cells are spontaneous.

(B) Oxidation occurs at the anode, and reduction occurs at the cathode.

(C) Electrons move toward the more negative electrical potential.

(D) Galvanic cells are composed of two half-cells connected by a salt bridge.

(E) The salt bridge maintains electroneutrality throughout the cell.

類組	:化學類	科目	:分析化學(1005))

	-	KK	2	
共_	貝	第		負

		** *					
14 Which	etatam	ont(a) is/ara D	IOT		, ,,		
				ect when the silve		half-cells are co	onnected
		ge and a poter $\rightarrow Ag(s)$		to form a galvani	c cell?		
$V^{2+}(a)$	$(q) + 2e^{-1}$	$-\rightarrow V(s)$	E F°	-0.7993 V =-1 125 V			
		is reduced.	D	1.125 V			
		oxidized.					
111	E_{cell}^o	= 1.924 V					
IV	V^{2+}	is reduced.					
V	. Ag i	s oxidized.					
(A) I a	ınd II	(B) III, IV,	and V	(C) I, II, and III	(D) III only	(E) IV and V	
15. An elec	trode w	vith a fixed po	otential is	the			
(A) ca	thode		(B) co	unter electrode	(C) indi	cator electrode	
(D) ret	ference	electrode	(E) wo	rking electrode			
16. A 100.0	0-ınL s	solution of co	pper(II) c	hloride is reacted	with excess silv	ver nitrate to pre	cipitate
				alculation is NOT			
copper(•	•		
(A) cal	culate	the molar ma	ss of silve	er chloride			
(B) cal	culate	the molar ma	ss of cop	per(II) chloride			
				oride from the pre	ecipitate mass		
				chloride from th	-	r chloride and t	he
		toichiometry	- FF (o mores of stree	Tomoride and a	ic
		2	ner(II) cl	nloride by the vol	ume of the conr	per(II) oblovida (a lution
		in liters	, p e	noride by the vor	ame of the copp	ci(ii) cilioride s	olution
17 Which o	of the fo	Mowing are t	aahniana	s to promote parti	2-1 4.0		
				that the concentration		and propinitor	t ana law
II. Rapi	idly add	the precipital	nt to pred	ipitate all analyte	from solution.	s and precipitant Then raise the te	. are 10W. Emperature
of th	e soluti	ion to promot	e crystal	growth.			
III. Slov	vly add	precipitant w	ith vigor	ous mixing to pre	event a highly s	upersaturated co	ondition in
solut		ana anatura a	f the col		.1.1.112	• •	
iv. Kais	e ine ie rsaturai	emperature o.	i the soit	tion to increase	solubility of the	precipitate and	decrease
(A) III			and IV	(C) II and IV	(D) I II and	III (E) I, III,	and IV
()		(-),	,	(c) II and I v	(<i>D</i>) 1, 11, unu	(L) 1, 111,	and iv
18	is the	e energy per u	ınit time _l	per unit area in th	e light beam.		
(A) Irra				sorbance	(C) Transmit	tance	
(D) Mo	lar abs	orptivity	(E) Free		. ,		

類組:化學類 科目:分析化學(1005)

19. If 99% of the light is absorbed by a solution, then according to the equation

$$A = \log\left(\frac{P_0}{P}\right) = -\log T$$

- (A) A = 1

- (B) A = 2 (C) A = 0.1 (D) A = 0.01 (E) A = 0.099
- 20. Which statement about the excited and ground states of molecules is FALSE?
 - (A) When a molecule absorbs light of sufficient energy, it is much more likely to undergo the transition S0 \rightarrow T1 than the transition S0 \rightarrow S1.
 - (B) Electron spins are parallel in the triplet, T1, excited state and opposed in the singlet, S1, excited state.
 - (C) Internal conversion is a nonradiative transition from the S1 state to the S0 state.
 - (D) When a molecule absorbs light of sufficient energy, an electron transitions from the S0 to the S1 state.
 - (E) Intersystem crossing is a nonradiative transition from the T1 state to the S0 state.
- 21. Which figures of merit describe dynamic range of an analytical method?
 - (A) standard deviation
 - (B) systematic error
 - (C) bias
 - (D) limit of quantification and limit of linearity
 - (E) coefficient of selectivity
- 22. Which electronic element can be used to connect a high internal resistance transducer (e.g. a pH electrode) to a voltage meter in order to minimize measurement error?
 - (A) operational amplifier
 - (B) lock-in amplifier
 - (C) resistor
 - (D) diode
 - (E) transformer
- 23. Which concept in measurement science refers to the minimum frequency of data points while recording electric potential changes as a function of time?
 - (A) Ohm's Law
 - (B) Kirchoff's Laws
 - (C) power Law
 - (D) Nyquist sampling theorem
 - (E) Pythagorean theorem

注意:背面有試題

	台灣聯合	大學系統 111 學	年度碩士班招	3生考試試題		
類組: 化學類	科目:分析化	之學(1005)		共	頁	第 <u>5</u> 頁
24. In photomultip	olier tube, used	in atomic emission	spectrometers, v	vhich particles a	are emi	tted
		e amplification of th				
(A) photons	(B) cations	(C) radical cation			ers	
		FTIR spectromete	r incorporating	Michelson inter	ferome	ter?
(A) prism(D) fixed min		liation beam ovable mirror	(C) sample c	ell		
26. Which radiatio nm?	n source is suita	able for IR spectron	netry in the wav	elength range o	f 1,000	-10,000
(A) hollow ca	thode lamp	(B) Nernst glower	(C) Ar lamp	(D) H ₂ lamp	(E) D	¹ 2 lamp
27. In molecular at Beer's law show			rument-related fa	actor causing de	viation	from
(A) instability	of the power si	upply of hollow cat	hode lamp			
(B) association	n of analyte wit	h solvent				
(C) reaction o	f analyte with s	olvent				
(D) solute inte	eractions at high	concentrations				
(E) presence of	of stray radiation	n				
28. What is the inp	ut transducer in	atomic emission sr	ectrometer?			
(A) attenuated		.				
(B) photomult	_					
(C) glass elect						
(D) digitizer						
(E) ion source						
29. Glow-discharge	optical emission	on spectroscopy is u	seful in:			
		c compounds in gas				
	fluorescence m		1			
(C) profiling e	lemental compo	osition of solid sam	ples			
		na mass spectrometr	-			
		luted from liquid cl	-	column		
30. Which element	is not analyzed	by hydride generat	ion and atomiza	tion systemasee	d with	atomic
absorption spect		, , , , , , , , , , , , , , , , , , , ,			17 ADAA 1	
(A) arsenic	(B) lithium	(C) tin (I	O) selenium	(E) bismuth		
				注意	::背面	有試題

類组: 化學類	科目:分析化學(1005)	
沢江・ルナス		

(A) 100% biscyanopropyl polysiloxane

(D) 35% diphenyl 65% dimethyl polysiloxane

(C) 14% cyanopropylphenyl 86% dimethyl polysiloxane

(E) 90% biscyanopropyl 10% phenylcyanopropyl polysiloxane

(B) 100% dimethyl polysiloxane

共

31.	Which element	is typically analy	zed by cold-vapo	or atomization at	omic absorption spe	ectroscopy?
	(A) lithium	(B) arsenic	(C) bismuth	(D) lead	(E) mercury	
32.	To provide a ma (A) magnetic f	• •	adrupole mass and	alyzer uses:		
			, by DC voltage			
	, ,	ld produced only	-		DC waltage	
	• /	•	eld and electric fi			
	• •	_ ·	eld and electric fi		RF voltage	
	(E) electric fie	ld produced by t	ooth RF and DC v	oltages		
33.	•	-	l interference in t Irupole mass spec		n of nickel-58 isotop	pe by
	(A) ⁴⁰ CaO		(C) ⁴⁴ CaO	(D) ⁴⁰ CaOH	(E) ⁴² CaOH	
34.	between the ion (A) to select or	source and the ene fragment ion ne precursor ion at ions	* * *	-	es (Q1, Q2, and Q3) le of Q2 in MS/MS	
35	featuring singly (A) electron io (B) chemical i (C) atmospher (D) electrospra	charged ion? nization onization ic pressure chem	nical ionization	to obtain mass s	spectrum of a macro	molecule
26	Which bonded	etationary nhace	used in one chror	natography has i	the lowest polarity?	

注意:背面有試題

類組: 化學類 科目: 分析化學(1005)

共 1 頁 第 1 頁

- 37. Which detector is used with gas chromatography to selectively detect halogen-containing organic compounds?
 - (A) electron capture detector
 - (B) thermal conductivity detector
 - (C) differential refractive-index detector
 - (D) flame ionization detector
 - (E) ultraviolet absorption detector
- 38. Which stationary phase will provide the longest retention of toluene in reversed-phase high-performance liquid chromatography?
 - (A) methyl groups immobilized on silica particles
 - (B) octyl groups immobilized on silica particles
 - (C) octadecyl groups immobilized on silica particles
 - (D) all the stationary phases (a-c) will always provide the same retention times
 - (E) none of the stationary phases (a-c) can retain toluene
- 39. What is the purpose of micromembrane suppressor used in some high-performance liquid chromatography systems?
 - (A) to suppress ionization in liquid chromatography hyphenated with mass spectrometry
 - (B) to enhance ionization in liquid chromatography hyphenated with mass spectrometry
 - (C) to remove conductive mobile phase components from eluent prior to conductometric detection
 - (D) to introduce conductive mobile phase components to eluent prior to conductometric detection
 - (E) to suppress band broadening in the chromatographic column
- 40. Ultra-high performance liquid chromatography (UHPLC) is a more advanced version of high-performance liquid chromatography (HPLC) providing superior separation efficiency. What is the key feature of UHPLC?
 - (A) use of particularly large particles of packing material
 - (B) use of particularly low flow rates of mobile phase
 - (C) use of high-viscosity mobile phase
 - (D) improved mass transfer
 - (E) improved coupling with mass spectrometry