共 5 頁 第 1 頁

※選擇題請在答案卡內作答,非選擇題請在答案卷內作答

1-10 題為單選題, 每題三分,採電腦閱卷,請用答案卡作答,答錯不倒扣。

List of abbreviations:

U: internal energy, H: enthalpy, S: entropy,

G: Gibbs free energy, A: Helmholtz free energy, μ : chemical potential,

q: heat, w: work; P: pressure, V: volume, T: temperature, R: gas constant

 $C_{v,m}$: constant-volume molar heat capacity,

 $C_{p,m}$: constant-pressure molar heat capacity,

 π_T : internal pressure

- 1. Which of the following equations is correct? (A) H = U + TS, (B) A = U PV, (C) G = H + TS, (D) $C_{p,m} C_{v,m} = \frac{1}{2}R$ for a perfect gas, (E) none of the above.
- 2. Which of the following equations is correct? (A) $C_v = (\frac{\partial H}{\partial T})_v$, (B) $\pi_T = (\frac{\partial H}{\partial V})_T$, (C) $-S = (\frac{\partial A}{\partial T})_p$, (D) $-P = (\frac{\partial A}{\partial P})_T$, (E) $dS \ge \frac{dq}{T}$.
- 3. A sample consisting of 1.00 mole of He(g) is expanded isothermally at T = 273 K from 20.0 dm³ to 40.0 dm³ against a constant external pressure equal to the final pressure of the gas. What are the q, w and ΔU of the process?
 - (A) $q = 1.13 \, kJ$, $w = -2.26 \, kJ$ and $\Delta U = -1.13 \, kJ$.
 - (B) $q = 1.13 \, kJ$, $w = -1.13 \, kJ$ and $\Delta U = 0 \, kJ$.
 - (C) $q = -1.13 \, kJ$, $w = -2.26 \, kJ$ and $\Delta U = -3.39 \, kJ$.
 - (D) q = 0 kJ, w = -1.13 kJ and $\Delta U = -1.13 kJ$.
 - (E) q = 1.13 kJ, w = 0 kJ and $\Delta U = 1.13 \text{ kJ}$.
- 4. About the Carnot cycle of a perfect gas, which of the following statements is true?
 - (A) The U of the system decreases, because there is work output in a Carnot cycle.
 - (B) The perfect gas follows PV = constant in the whole Carnot cycle.
 - (C) The S of the system does not change after a complete Carnot cycle.
 - (D)The perfect gas goes through the Carnot cycle spontaneously.
 - (E) An engine running with the Carnot cycle has engine efficiency of 100%.
- 5. If $H_2(g)$ is compressed from 160 m³ at 400 K to 40 m³ at 200 K, what is the value of ΔS_m ? Take $C_{p,m} = 29.4 \, J K^{-1} mol^{-1}$, $\ln(2) = 0.69$.
 - (A) $26 JK^{-1}mol^{-1}$, (B) $-32 JK^{-1}mol^{-1}$, (C) $-26 JK^{-1}mol^{-1}$, (D) $13 JK^{-1}mol^{-1}$, (E) $32 JK^{-1}mol^{-1}$.

共 5 頁 第 2 頁

※選擇題請在答案卡內作答,非選擇題請在答案卷內作答

- 6. About free energy, which of the following statement is true.
 - (A) At constant P, Gibbs free energy increase with T.
 - (B) At constant T, Helmholtz free energy increase with P.
 - (C) As a system approaches equilibrium, the second derivatives of free energy approaches zero.
 - (D) At constant temperature and pressure, the maximum non-expansion work can be expressed by dw = dG.
 - (E) At a given temperature, a chemical reaction involving a more negative $\Delta_r G$ will have a lower equilibrium constant than a reaction that has a less negative $\Delta_r G$.
- 7. The molar enthalpy of vaporization $(\Delta_{vap}H_m)$ of benzene at its normal boiling point (80.09 °C) is 30.72 $kJ \ mol^{-1}$. What are the value of the molar Gibbs free energy of vaporization $(\Delta_{vap}G_m)$ and the value of molar entropy of vaporization $(\Delta_{vap}S_m)$ at 80.09 °C?
 - (A) $\Delta_{vap}G_m = 0.4411 \, kJ \, mol^{-1}$, $\Delta_{vap}S_m = 58.72 \, JK^{-1} mol^{-1}$.
 - (B) $\Delta_{vap}G_m = 0$, $\Delta_{vap}S_m = 86.97 J K^{-1} mol^{-1}$.
 - (C) $\Delta_{vap}G_m = 0$, $\Delta_{vap}S_m = 383.6 JK^{-1}mol^{-1}$.
 - (D) $\Delta_{vap}G_m = -0.4411 \ kJ \ mol^{-1}, \ \Delta_{vap}S_m = 88.22 \ JK^{-1}mol^{-1}.$
 - (E) none of the above.
- 8. The rate constant of a reaction increases 100 times from T = 200 K to 400 K. What is the activation energy of the reaction. Take ln(10) = 2.30.
 - (A) 12.4 kJ mol^{-1} , (B) 15.3 kJ mol^{-1} , (C) 24.8 kJ mol^{-1} , (D) 30.6 kJ mol^{-1} , (E) 6.2 kJ mol^{-1} .
- 9. At T = 298 K and $P = 1.33 \times 10^{-7}$ Pa, a gas sample consists of N_2 molecules with a collision diameter of 395 pm. What are the mean speed (v_{mean}) of the molecules, and the mean free path(λ) in the gas?
 - (A) $v_{mean} = 475 \text{ ms}^{-1}$, $\lambda = 6.31 \times 10^4 \text{ m}$.
 - (B) $v_{mean} = 525 \text{ ms}^{-1}$, $\lambda = 4.32 \times 10^4 \text{ m}$.
 - (C) $v_{mean} = 830 \text{ ms}^{-1}$, $\lambda = 5.62 \times 10^4 \text{ m}$.
 - (D) $v_{mean} = 232 \text{ ms}^{-1}$, $\lambda = 8.57 \times 10^4 \text{ m}$.
 - (E) $v_{mean} = 371 \text{ ms}^{-1}$, $\lambda = 9.35 \times 10^4 \text{ m}$.

注:背面有試題

共 5 頁 第 3 頁

※選擇題請在答案卡內作答,非選擇題請在答案卷內作答

- 10. Regarding an ideal solution of A(l) and B(l), which of the following statements is true?
 - (A) Adding B(I) into pure A(I) increases the chemical potential of A(I).
 - (B) The mixing process of A(*l*) and B(*l*) is spontaneous because the entropy of mixing $(\Delta_{mix}S)$ is negative.
 - (C) The composition in the gas phase is richer in A, if the vapor pressure of pure A(l) is equal to the vapor pressure of pure B(l).
 - (D) The enthalpy of mixing $(\Delta_{mix}H)$ has no contribution to the mixing process.
 - (E) The activity of A(l) is higher than the mole fraction of A(l).

11-14 題為多選題,每題五分,採電腦閱卷,請用答案卡作答,每一選項的個別分數為一分, 答錯的選項倒扣一分。

11. θ_R is the characteristic rotational temperature, θ_V is the characteristic vibrational temperature, and $C_{v,m}$ is the molar heat capacity at constant volume. Assume that a perfect gas of diatomic molecules has $\theta_R = 60 \, K$ and $\theta_V = 273 \, K$, which of the following statements about $C_{v,m}$ are true?

The $C_{v,m}$ of the diatomic molecule is

- (A) $8.314 \int K^{-1} mol^{-1}$ at T = 40 K,
- (B) $29.1 J K^{-1} mol^{-1}$ at T = 300 K,
- (C) $20.8 J K^{-1} mol^{-1}$ at T = 40 K,
- (D) $12.5 J K^{-1} mol^{-1}$ at T = 150 K,
- (E) $20.8 J K^{-1} mol^{-1}$ at T = 100 K.

- 12. A pure substance has a boiling point of T_b , and a melting point of T_m at a pressure in-between the triple point pressure (p_3) and the critical point pressure (p_c) of the substance. Which of the following statements about the μT plot of the substance are true?
 - (A) At $T > T_b$, the μ of the vapor phase is lower than the μ of the solid phase.
 - (B) The solid phase has the lowest μ at $T < T_m$.
 - (C) At $T = T_m$, the liquid phase and the vapor phase have identical μ .
 - (D) The liquid phase is the most stable state at $T_m < T < T_b$.
 - (E) the solid phase gives a $\mu-T$ curve with a less negative slope than the gas phase, because the solid phase has a smaller molar volume.

共与 頁第4頁

※選擇題請在答案卡內作答,非選擇題請在答案卷內作答

- 13. Which of the following statements are true?
 - (A) Gases that have Joule-Thomson coefficient larger than zero, show heating effect on expansion.
 - (B) Repulsive intermolecular interactions are dominating in gases with compression factor less than 1.
 - (C) In Joule free expansion, the internal energy of gas molecules increases as the volume of the gas increase, if the internal pressure of the gas is positive.
 - (D) In Joule-Thomson expansion, the enthalpy of the system is a constant.
 - (E) If the mixing of two liquids (A(l) and B(l)) is exothermic, the A-B interactions are more favorable than the A-A and B-B interactions.
- 14. In the reaction A+2B \rightarrow 3C+4D, the rate of consuming B is 4.0 $mol\ dm^{-3}s^{-1}$, and the rate law for the reaction was found to be $R = k[A][B]^2$. Which of the following statements are correct?
 - (A) The rate of formation of C is $6.0 \text{ mol } dm^{-3}s^{-1}$.
 - (B) The unit of the rate constant k is $dm^6mol^{-2}s^{-1}$.
 - (C) The reaction is a second-order reaction.
 - (D) If the reaction is exothermic, the equilibrium constant of the reaction decreases as the temperature rises.
 - (E) The rate of consumption of A is $4.0 \text{ mol } dm^{-3}s^{-1}$.

注:背面有試題

共ち頁第5頁

※選擇題請在答案卡內作答,非選擇題請在答案卷內作答

15-17 題為計算題 計算題應詳列計算過程,無計算過程者不給分。

15. (20 \Re) Consider porphyrin molecule that has 26 π electrons as planar geometry in the following figure. All π electrons are confined inside the plane. Using the 2D-box model with $a=1000 \mathrm{pm}$ (1pm=10⁻¹²m). to calculate the lowest energy absorption of the porphyrin molecule (the experiment value is =17000cm⁻¹).

$$\operatorname{Hint}\left(E_{n_x n_y} = \frac{h^2}{8ma^2} \left[n_x^2 + n_y^2\right]\right), \quad m = 9.1 \times 10^{-31} \, kg \, , \\ \hbar = 1.1 \times 10^{-34} \, J \cdot s \, , \quad h = 2\pi \hbar \, , \quad \pi = 3.14 \, kg \, ,$$

- 16. (10 $\frac{1}{2}$) The highest occupied molecular orbitals for excited-state oxygen molecule are $(1\pi_g)^l(3\sigma_u)^l$, determine the term symbols and energy order of terms (by Hund's role).
- 17. (20 �) An oscillator particle has Hamiltonian $\hat{H} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + cx^4$ where $-\infty < x < \infty$, use trial function $\psi(x) = e^{-\beta x^2}$ to calculate (by variation method)

$$E(\beta) = \frac{\int_{-\infty}^{\infty} \psi(x) \hat{H} \psi(x) dx}{\int_{-\infty}^{\infty} \psi(x) \psi(x) dx}$$
 and then $\frac{\partial E(\beta)}{\partial \beta} = 0$

(Hint:
$$I_n = \int_{-\infty}^{\infty} x^{2n} e^{-\beta x^2} dr = \frac{(2n-1)!!}{(2a)^n} \sqrt{\frac{\pi}{\beta}}$$
)

