台灣聯合大學系統102學年度碩士班招生考試命題紙 共 三 頁 第 1 頁

科目: 無機化學(1003)

校系所組:中央大學化學學系

交通大學應用化學系(甲組)

清華大學化學系

清華大學材料科學工程學系 (丙組)

- 1. What are the differences between lithophiles and chalcophiles elements found in the crust of the Earth (5 points)
- 2. At most, how many electrons in an atom can have both n = 5 and l = 3? (5 points)
- 3. X-ray crystal structures of ClF₃O and BrF₃O have been determined.
 - (a) Would you expect the lone pair on the central halogen to be axial or equatorial in these molecules?

 Why? (5 points) (Draw the Lewis structure will be helpful)
 - (b) Which molecule would you predict to have the smaller $F_{equatorial}$ -central atom-oxygen angle? Why? (5 points)
- **4.** Using the character table shown below, constructing the molecular orbital of NH₃ (please write the construction process as detail as possible) (10 points)

C _{3v}	E $2C_3$ $3\sigma_{v}$		
A_1	1 1 1	z	x^2+y^2, z^2
A_2	1 1 -1	$ R_z $	xy
E	2 -1 0	$(x, y) (Rx, R_y)$	$(x^2-y^2, xy) (xz, yz)$
ı	11	111	IV

- 5. HF has $H_0 = -11.0$ (H_0 : Hammett acidity function). Addition of 4 % SbF₅ lowers H_0 to 21.0, which is acidic enough to protonate alkene. Explain why? (5 points)
- **6.** What is "p-n junction"? Give two applications of "p-n junction" and simply describe their working principle. (10 points, 2 points for each answer)

::背面有試題

台灣聯合大學系統102學年度碩士班招生考試命題紙 共_3_頁第2_頁

科目: 無機化學(1003)

校系所組:中央大學化學學系

交通大學應用化學系(甲組)

清華大學化學系

清華大學材料科學工程學系(丙組)

- 7. Although B₂H₆ has D_{2h} symmetry. I₂Cl₆ is planar. Draw the Lewis structures of these two molecules. (5 points)
- 8. Calculations have been reported on the changes that occur when the following compounds are oxidized by one electron. (10 points)

$$\begin{array}{c|c} CO & CO \\ OC \\ OC \\ PH_3 & OC \\ \hline \end{array}$$

- (a) What is the effect on the C-O distances when they are oxidized? Why?
- (b) What is the effect on the Cr-P and Cr-N when they are oxidized? Why?
- 9. From the following spectral data and using the Tanabe-Sugano diagrams (shown below), calculate Δ_0 (and B) for the following:

- (a) $[Cr(C_2O_4)_3]^{3-}$, which has absorption bands at 23600 and 17400 cm⁻¹. A third band occurs well into the ultraviolet. Calculate Δ_0 (2 points)
- (b) $[VF_6]^{3-}$, which has absorption bands at 14800 and 23250 cm⁻¹, plus a third band in the ultraviolet. Calculate Δ_0 . Also calculate B for this ion. (8 points)

注: 意:背面有試題

台灣聯合大學系統102學年度碩士班招生考試命題紙 共_3_頁第多_頁

科目: 無機化學(1003)

校系所組:中央大學化學學系

交通大學應用化學系(甲組)

清華大學化學系

清華大學材料科學工程學系 (丙組)

10. Complexes of formula Rh(CO)(phosphine)₂Cl have the C-O stretching bands shown below. Match the infrared bands with the appropriate complex and explain why? (11 points)

v(CO), cm⁻¹: 1923, 1984, 2004;

 $\text{Complex: } \text{Rh}(\text{CO})(P(p-C_6H_4F)_3)_2\text{Cl}, \\ \text{Rh}(\text{CO})(P(t-C_4H_9)_3)_2\text{Cl}, \\ \text{Rh}(\text{CO})(P(C_6F_5)_3)_2\text{Cl}.$

11. Predict the transition metal-containing products of the following reactions: (3 points each),

- (a) $Ir(PPh_3)_3CI \xrightarrow{\Delta}$
- (b) trans-Ir(CO)Cl(PPh₃)₂ + H₂ \longrightarrow
- (c) $W(CO)_6 + C_6H_5Li$

12. List 4 Greenhouse gases (8 points). Explain why one of them is more notable (2 points).

