台灣聯合大學系統 100 學年度碩士班考試命題紙 共 4 頁 第

科目:無機化學(1003)

校系所組:中央大學化學學系

交通大學應用化學系(甲組)

清華大學化學系

清華大學材料科學工程學系(丙組)

Write down the following parameters if the complexes shown below meet the 18-electron rule. (15%)

M: the first row transition metal

M: the second row transition metal

M: the third row transition metal

- Briefly answer the following questions.
 - (—) Show the splitting of the metal d orbitals for square planar and trigonal bipyramidal complexes. (4%)
 - (<u>___</u>) Select the one that shows the weakest intensities for d-d transitions from the following complexes and give your reasons. (3%) $Ti(H_2O)_6^{3+}$, $V(H_2O)_6^{3+}$, $Mn(H_2O)_6^{3+}$, $Mn(H_2O)_6^{2+}$, and $NiCl_4^{2-}$
 - (\equiv) Select the one that has the strongest d-d transition intensities from the following complexes. Give your reasons. (3%) $MnCl_4^{2-}$, $NiCl_4^{2-}$, $Ni(CN)_4^{2-}$, $Ni(H_2O)_6^{2+}$, and $Cu(H_2O)_6^{2+}$
- Ξ > Briefly answer the following questions.
 - (—) Arrange the v(C=O) vibration frequencies in the increasing order for the following complexes. Give your reasons. (4%)

NaMn(CO)₅, NaMn(CO)₄(PPh₃), CH₃Mn(CO)₅, and Mn(CO)₄NO

(\equiv) Arrange the values of 10 Dq in the decreasing order for the following complexes. Give your reasons. (3%) $Co(NH_3)_6^{3+}$, $Co(CN)_6^{3-}$, $Rh(CN)_6^{3-}$, and CoF_6^{3-}

 (\equiv) Arrange the tendency of being square planar complexes with the formula $MCl(PPh_3)_3^{z+}$. (3%)

M = Co(I), Rh(I), z = 0; Pt(II), z = 1; Fe(0), z = -1

台灣聯合大學系統 100 學年度碩士班考試命題紙 共_4_頁 第_2_頁

交 科 一

: 無機化學(1003)

校系所組:中央大學化學學系

交通大學應用化學系(甲組)

清華大學化學系

清華大學材料科學工程學系 (丙組)

- 四、Briefly answer the following questions.
 - (—) Which one has larger k value?

(4%)

1.
$$[Cr(H_2O)_6]^{2+} + H_2*O \xrightarrow{k_1} [Cr(H_2O)_5(H_2*O)]^{2+} + H_2O$$

*O = ^{18}O

- 2. $[Cr(CN)_6]^{4-} + *CN^{-} \xrightarrow{k_2} [Cr(CN)_5(*CN)]^{4-} + CN^{-}$ $*C = {}^{13}C$
- (\equiv) Do you expect an inner-sphere or outer-sphere reaction mechanism for the following reaction. Give your reasons. (3%) $Co(NH_3)_6^{3+} + Cr(H_2O)_6^{2+} \rightarrow Co(NH_3)_6^{2+} + Cr(H_2O)_6^{3+}$
- (\equiv) Write down the detailed reaction mechanism for the following two reactions.

1.
$$CH_3OH + CO \xrightarrow{Rh(CO)_2I_2} H_3C \xrightarrow{O} OH$$
 (4%)

2.
$$H_2C = CH_2 + 1/2 O_2 - \frac{PdCl_4^{2-}}{CuCl_2} - CH_3CHO$$
 (4%)

 \pm . The following potential diagram summarizes the results of electrochemical studies of the acidic aqueous solution chemistry of uranium.

$$[UO_{2}]^{2+} \xrightarrow{0.17 \text{ V}} [UO_{2}]^{+} \xrightarrow{0.38 \text{ V}} U^{4+} \xrightarrow{-0.52 \text{ V}} U^{3+} \xrightarrow{-4.70 \text{ V}} U^{2+} \xrightarrow{-0.10 \text{ V}} U$$

- (—) Based on the potential diagram shown above, draw the corresponding Frost diagram. (5%)
- (二) What is the most stable oxidation state of uranium in acidic aqueous solution? (2%)
- (≡) Which species is (or are) thermodynamically unstable with respect to disproportionation? (3%)

注:背面有試題

台灣聯合大學系統 100 學年度碩士班考試命題紙 共_4_頁 第_3_頁

科目:無機化學(1003)

校系所組:中央大學化學學系

交通大學應用化學系(甲組)

清華大學化學系

清華大學材料科學工程學系 (丙組)

The first barium sodide, [Ba²⁺(H5-Azacryptand[2.2.2]⁻)][Na⁻], was synthesized by the reaction of Ba, Na, and H6-Azacryptand[2.2.2] (shown below). In the solid state, the Na⁻ ions pair up to give [Na₂]²⁻. Construct an MO diagram for [Na₂]²⁻ and determine the bond order in this species. (5%)

H6-Azacryptand[2.2.2]

- ± · (—) Write an equation for the reaction of NOCl with AgNO₃ in liquid N₂O₄. What type of reaction is this?

 Explain? (6%)
 - ($\stackrel{-}{-}$) Write a balanced equation for the oxidation of Mn²⁺ to MnO₄⁻ by the perxenate ion in acidic solution; Assume that neutral xenon is produced. (4%)
- /\ As shown below, each compound in List 1 has a matching description in List 2. Correctly match the partners.

 There is only one correct statement for each compound.

 (10%)

List 1	List 2
Li ₃ N	Sparingly soluble in water
CaF ₂	Strong oxidizing agent
Be(OH) ₂	Formed by direct combination of the elements, and possesses a layer structure
Cs ₇ O	Amphoteric
Li ₂ CO ₃	Polymeric in the solid state
NaBH ₄	Soda lime
CaCl ₂	A suboxide
${\rm MgO_2}$	A prototype crystal structure
BeCl ₂	Hygroscopic solid, used for de-icing
Ca(OH) ₂ /NaOH	Used as a reducing agent

注:背面有試題

台灣聯合大學系統 100 學年度碩士班考試命題紙 共_4_頁 第_4_頁

科岩

: 無機化學(1003)

校系所組:中央大學化學學系

交通大學應用化學系(甲組)

清華大學化學系

清華大學材料科學工程學系(丙組)

九、A 6-coordinate complex may be obtained by crystallizing anhydrous CaI₂ from THF (C₄H₈O) solution at 253 K. In contrast, when anhydrous BaI₂ is crystallized from THF at 253 K, a 7-coordinate complex is isolated. Suggest structures for the two complexes. Rationalize why CaI₂ and BaI₂ in THF solutions form complexes that have different coordination numbers. (5%)

+ • The electronic spectra of mixtures of CH_2Cl_2 solutions (each 0.993 mmol/mL) of I_2 and the donor D shown below were recorded for different volume ratios of the two solutions. Values of the absorbance for the absorption at λ max = 308 nm are as follows:

Absorbance
0.000
0.056
0.097
0.129
0.150
0.164
0.142
0.130
0.103
0.070
0.000

Donor, D

(—) Suggest how compound D might interact with I2.

- (3%)
- (\equiv) Use the data in the table to establish the stoichiometry of the complex formed between D and I_2 . (3%)
- (\equiv) In the Raman spectrum of the complex, a band at 162 cm⁻¹ is assigned to the I₂ stretching mode. Explain why this value is shifted from that of 215 cm⁻¹ for I₂ itself. (4%)