類組:電機類 科目:工程數學 A(3003)

共 5 頁 第 1 頁

多重選擇題,共20題,每題5分答錯一個選項倒扣1分,倒扣至本大題(即多選題)0分為止。

- 1. If a linear transformation from a vector space V to another vector space W is one-to-one, which of the following statements is/are true?
 - (A) It is onto;
 - (B) $\dim(V) = \dim(W)$;
 - (C) The null space of this transformation contains only the zero vector;
 - (D) It is invertible;
 - (E) All of the above.
- 2. Consider a subset $S = \{ (1, 2, 1), (2, -1, 1) \}$ of \mathbb{R}^3 , which of the following statements is/are true?
 - (A) The set S spans a subspace in \mathbb{R}^3 ;
 - (B) Such a subspace is the z = 1 plane in R^3 ;
 - (C) The set S is a linearly independent set;
 - (D) The two vectors in S are orthogonal in the subspace;
 - (E) If we add another vector (0, 0, 1) into S, this set can span \mathbb{R}^3 .
- 3. Which of the following processes is/are linear?
 - (A) Fourier transform of real-valued functions on R;
 - (B) Laplace transform of real-valued functions on R;
 - (C) Determinant calculation of real $n \times n$ matrices;
 - (D) Inner product of an arbitrary vector x and a fixed vector z in \mathbb{R}^n ;
 - (E) Norm calculation of vectors in \mathbb{R}^n .
- 4. What is the rank of the matrix:

$$\begin{pmatrix} 1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1 \end{pmatrix}$$
?

- (A) 0;
- (B) 1;
- (C) 2;
- (D) 3;
- (E) 4.
- 5. Find the determinant of the symmetric Pascal matrix:

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 6 & 10 \\ 1 & 4 & 10 & 20 \end{pmatrix}.$$

- (A) 0;
- (B) 1;
- (C) 2;
- (D) 3;
- (E) 4.

類組:電機類 科目:工程數學 A(3003)

共与頁第二頁

- 6. Find the parabola $y = a + b x + c x^2$ that comes closest (least squares error) to the data points: (x, y) = (-2, 0), (-1, 0), (0, 1), (1, 2),and (2, 0).
 - (A) a = 40/35, b = 0, c = 1/7;
 - (B) a = 41/35, b = 1/5, c = -2/7;
 - (C) a = 40/35, b = -1/5, c = 2/7;
 - (D) a = 41/35, b = 0, c = -2/7;
 - (E) a = 40/35, b = 1/5, c = 1/7.
- 7. Which of the following sets consists of the eigenvalues of $A = \begin{bmatrix} 3 & 2 \\ 3 & -2 \end{bmatrix}$?
 - (A) $\{3, -4\}$;
 - (B) $\{3,4\}$;
 - (C) $\{5, -7\}$;
 - (D) $\{4, -3\}$;
 - (E) $\{2, -4\}$.
- 8. Consider two matrices $A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 3 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 1 \\ 3 & 0 \\ -3 & 4 \end{bmatrix}$. Which of the following statements

about the inner product (A, B), and their orthogonality is/are true?

- (A) $\langle A,B \rangle = 0$, orthogonal;
- (B) $\langle A, B \rangle = 6$, not orthogonal;
- (C) $\langle A, B \rangle = 1$, not orthogonal;
- (D) $\langle A, B \rangle = 3$, not orthogonal;
- (E) $\langle A,B \rangle = 0$, not orthogonal.
- 9. Which of the following matrices is the coordinate transformation matrix from a basis of R² consisting of $v_1 = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$, $v_2 = \begin{bmatrix} 7 \\ 3 \end{bmatrix}$ to another basis of R^2 consisting of $u_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $u_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$?

 - (A) $\begin{bmatrix} 3 & 4 \\ -4 & -5 \end{bmatrix}$; (B) $\begin{bmatrix} -3 & -4 \\ 4 & -5 \end{bmatrix}$; (C) $\begin{bmatrix} 3 & 5 \\ 7 & 8 \end{bmatrix}$; (D) $\begin{bmatrix} 1 & 3 \\ 5 & -2 \end{bmatrix}$; (E) $\begin{bmatrix} 5 & -4 \\ 3 & -2 \end{bmatrix}$.
- 10. Which of the following statements is/are true?
 - (A) Every nonzero finite-dimensional inner product space has an orthonormal basis.
 - (B) Let A be an $m \times n$ matrix with rank n and $m \ge n$. If A^* is the adjoint matrix of A, then A^*A is invertible.
 - (C) A periodic function is in an inner product space with infinite linearly independent vectors.
 - (D) A square matrix that is diagonalizable must be full ranked.
 - (E) Any normal operator in a finite-dimensional inner product space is diagonalizable.

類組:電機類 科目:工程數學 A(3003)

共5 頁第3頁

- 11. Suppose that the motion of a certain spring-mass system satisfies the differential equation $u'' + du' + \frac{5}{4}u = A\cos(\omega t)$ and the initial conditions: u(0) = 2, u'(0) = 3, where d, A, and ω are real numbers. Which of the following statements are true?
 - (A) When d = 0 and A = 0, the natural frequency of this unforced system is 1 Hz.
 - (B) When d=1, ω is near 1, and A=3, the amplitude of the above forced response will be quite large.
 - (C) When d = 1, $\omega = 1$, and A = 3, the solution of the given initial problem is $u(t) = \frac{22}{17}e^{-t/2}\cos t + \frac{14}{17}e^{-t/2}\sin t + \frac{12}{17}\cos t + \frac{48}{17}\sin t$.
 - (D) When d = 1, $\omega = 1$, and A = 3, the amplitude of the steady-state solution is $R = \frac{15}{17}$.
 - (E) As $\omega \to \infty$, the amplitude of the steady-state solution will approach to zero for d=1 and d=3.
- 12. Consider the differential equation: 2y'' + y' + 2y = g(t). Which of the following statements are true?
 - (A) Let g(t) be defined as follows: g(t) = 1, for $5 \le t < 20$; g(t) = 0, for $0 \le t < 5$ or $t \ge 20$. Thus, g(t) is a continuous function.
 - (B) The Laplace Transform of g(t) is $[e^{-5s} e^{-20s}]/s$.
 - (C) Assume that the initial conditions are y(0) = 1 and y'(0) = 0. The Laplace Transform of y(t) is $H(s)[e^{-5s} e^{-20s}]/s$, where $H(s) = \frac{1}{2s^2 + s + 2}$.
 - (D) If g(t) is changed to a unit impulse function applied at t = 0 and the initial conditions are y(0) = 0 and y'(0) = 0. The corresponding impulse response is $y(t) = -\frac{1}{2} \left(e^{-4t} \cos \frac{\sqrt{15}}{4} t + \frac{1}{\sqrt{15}} e^{-4t} \sin \frac{\sqrt{15}}{4} t \right).$
 - (E) The steady-state of this impulse response will approach to zero.
- 13. Let f(x) be a periodical function f(x+4) = f(x) in which f(x) is defined as follows: f(x) = -x for $-2 \le x < 0$, and f(x) = x for $0 \le x < 2$. The Fourier series of f(x) is of the form $f(x) = \frac{a_0}{2} + \sum_{m=1}^{\infty} \left(a_m \cos\left(\frac{m\pi x}{2}\right) + b_m \sin\left(\frac{m\pi x}{2}\right) \right)$. Which of the following statements are true? (A) f(x) is a differentiable function.
 - (B) $a_0 = 2$.
 - (C) $a_1 = \frac{-8}{\pi}$
 - (D) $a_4 = 0$.
 - (E) $b_4 = 0$.
- 14. Consider the following differential equation: $(3xy + y^2) + (x^2 + xy)y' = 0$. Which of the following statements are true?
 - (A) This differential equation is an exact differential equation.
 - (B) This differential equation is a separable differential equation.
 - (C) To solve this differential equation, there exists an integrating factor that is a function of x only.
 - (D) $\mu(x, y) = 1/(xy(2x + y))$ is also an integrating factor for this differential equation.
 - (E) Solutions of this differential equation are given implicitly by $x^3y + 0.5x^2y^2 = c$, where c is a constant.

注意:背面有試題

類組:電機類 科目:工程數學 A(3003)

共 5 頁 第 4 頁

15. Consider the following initial value problem: y' = G(x, y), where $G(x, y) = \frac{3x^2 + 4x + 2}{2(y - 1)}$.

Which of the following statements are true?

- (A) G(x,y) is analytic in \mathbb{R}^2 .
- (B) This initial value problem is a separable differential equation.
- (C) The solution of this problem is given implicitly by $y^2 2y = x^3 + 2x^2 + 2x + c$, where c is real.
- (D) When y(0) = -1, this problem has a unique solution in some interval about x = 0.
- (E) When y(0) = 1, this problem has a unique solution in some interval about x = 0.
- 16. Which of the following expressions is correct? Note: z is complex number.
 - (A) $\cos(iz) = \cosh(z)$
 - (B) $\sinh(z) = i\sin(z)$
 - (C) $e^{\ln(z)} = z$
 - (D) $|\sinh(z)|^2 = \cosh^2(x) \cos^2(y)$, where z = x + iy
 - (E) $\cos(z) = \frac{e^{iz} + e^{-iz}}{2}$
- 17. Evaluate the integral $f = \oint_C (z a)^n dz$, where both z and a are complex numbers, n is any integer and C is a circle of radius R centered at a and oriented anticlockwise. Which of the following expressions is correct?
 - (A) When n = 1, $f = 2\pi i$,
 - (B) When n = -1, $f = 2\pi i$,
 - (C) When n = 1000, $f = 2\pi i$,
 - (D) When n = -20, f = 0,
 - (E) When n = 1, f = 0.
- 18. Compute $\int_{-\infty}^{\infty} \frac{1}{x^4 + 1} dx$, x is a real number.
 - (A) 0
 - (B) $\frac{\pi}{2}$
 - (C) 1
 - (D) $\pi^{\frac{\sqrt{2}}{2}}$
 - (E) None of the above is correct.

類組:電機類 科目:工程數學 A(3003)

共_5_頁第5_頁

19. Evaluate the integral $f = \int_C z^2 dz$, where z = x + iy is a complex number, in each of the following cases.

Paths:	y ↑ P(1,2)
I. C is the straight line OP joining the points $O(0,0)$ and $P(1,2)$.	
II. C is the straight line from $O(0,0)$ to $A(1,0)$	I.
and then from $A(1,0)$ to $P(1,2)$. III. C is the parabolic path $y = 2x^2$.	
III. C is the parabolic path $y - 2x$.	

Solution options: a. $2\pi i$ b. $\frac{-1}{7}(12+5i)$ c. $\frac{-1}{3}(11+2i)$ d. 0

- (A) Along all path I, II, and III, f = a.
- (B) Along the path III, f = b.
- (C) Along the path II, f = c.
- (D) Along the path II and III, f = a, while along the path I, f = d.
- (E) None of the above is correct.
- 20. Find all the Taylor and Laurent series expansions of $f(z) = \frac{1}{6 z z^2}$ with center 0. Which of the following expressions is correct?

Region	Expression
I. $ z < 2$ II. $2 < z < 3$	a. $\sum_{n=1}^{\infty} \left[\left(-\frac{2^{n-1}}{5} \right) + \left(\frac{(-1)^{n-1}3^{n-1}}{5} \right) \right] \frac{1}{z^n}$ b. $\sum_{n=1}^{\infty} \left(-\frac{2^{n-1}}{5} \right) \frac{1}{z^n} + \sum_{n=0}^{\infty} \left(\frac{(-1)^n}{5 \times 3^{n+1}} \right) z^n$
III. $ z > 3$	c. $\sum_{n=0}^{\infty} \frac{1}{5} \left[\frac{1}{2^{n+1}} + \frac{(-1)^n}{3^{n+1}} \right] z^n$

- (A) a. in region I. / b. in region II. / c. in region III.
- (B) a. in region II. / b. in region I. / c. in region III.
- (C) a. in region III. / b. in region I. / c. in region II.
- (D) a. in region II. / b. in region III. / c. in region I.
- (E) None of the above is correct