類組:電機類 科目:工程數學 C(3005)

共16 頁 第 1 頁

- 本測驗試題為多選題(答案可能有一個或多個),請選出所有正確或最適當的答案,並請將答案用2B鉛筆填於答案卡。
- 共二十題,每題五分。每題ABCDE選項單獨計分;每一選項個別分數為一分,答錯倒扣一分,倒扣至本測驗試題零分為止。

Notation: In the following problems, \mathbb{R} is the usual set of all real numbers. We will use underlined letters such as $\underline{a} \in \mathbb{R}^n$ to denote a real, column vector \underline{a} of length n and similarly will use boldface letters such as $\mathbf{A} \in \mathbb{R}^{m \times n}$ to denote a real matrix \mathbf{A} of size $m \times n$. $\underline{0}$ is the all-zero column vector of proper length. \mathbf{A}^{\top} is the transpose of matrix \mathbf{A} . rank(\mathbf{A}) denotes the rank of matrix \mathbf{A} . \mathbf{I}_n is the $n \times n$ identity matrix. $\det(\mathbf{A})$ and $\det(\mathbf{A})$ are respectively the determinant and trace of square matrix \mathbf{A} . Unless otherwise stated, all vector spaces and linear combinations are over field \mathbb{R} and the orthogonality is with respect to the usual Euclidean inner product. Primes of functions of one variable denotes the derivatives with respective the variable, for instance, $y'(x) = \frac{d}{dx}y(x)$.

- 1. Consider the vectors that end at the vertices of the unit cube in the \mathbb{R}^{10} space, i.e. the vectors in the form of $[x_1, x_2, \dots, x_{10}]^{\mathsf{T}}$ in which x_i , $i = 1, 2, \dots, 10$, is either zero or one but not all x_i 's are zero simultaneously. We then select from these vectors to form a set such that vectors in the set are mutually orthogonal to each other. At most how many vectors can the set have?
 - (A) 2.
 - (B) 10.
 - (C) 10^2 .
 - (D) 2^{10} .
 - (E) None of the above is true.

類組:<u>電機類</u> 科目:<u>工程數學 C(3005)</u>

共16頁第2頁

2. Which of the following statements is/are true?

(A) A real matrix with real eigenvalues and orthogonal eigenvectors is symmetric.

(B) For a matrix

$$\mathbf{A} = \left[\begin{array}{ccc} 0 & \times & 0 \\ \times & \times & \times \\ 0 & \times & 0 \end{array} \right]$$

regardless of the values of the five elements marked by \times 's (they can be different), **A** cannot have 1 as its eigenvalue.

(C) If a 3×3 matrix has three eigenvalues 0, 1, 2, then its rank is 3.

(D) The rotation matrix

$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

does not have eigenvectors in \mathbb{R}^2 , unless θ is an integral multiple of π .

(E) None of the above is true.

3. Consider the 2×2 matrix

$$\mathbf{A} = \left[\begin{array}{cc} 0.7 & -0.3 \\ -0.3 & 0.7 \end{array} \right]$$

Which of the following statements is/are true?

(A) A is diagonalizable.

(B) A is positive definite.

(C) ${\bf A}$ and ${\bf A}^2$ have the same eigenvectors.

(D)

$$\lim_{k \to \infty} \mathbf{A}^k = \begin{bmatrix} 0.5 & -0.5 \\ -0.5 & 0.5 \end{bmatrix}$$

(E) None of the above is true.

類組:電機類 科目:工程數學 C(3005)

共16頁第3頁

- 4. Which of the following statements is/are true?
 - (A) For a nonzero matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, let \mathbf{P} be a matrix that orthogonally projects vectors in \mathbb{R}^n onto the column space of \mathbf{A} . Then $\mathbf{I}_n \mathbf{P}$ projects onto the right null space of \mathbf{A} .
 - (B) If $A \in \mathbb{R}^{3\times 2}$ has two orthonormal columns, then $A^{\top}A = I_2$.
 - (C) The orthogonal projection of vectors in \mathbb{R}^3 onto the column space of $\mathbf{A} = \begin{bmatrix} 0 & 0 \\ 0 & 2 \\ 3 & 0 \end{bmatrix}$ can be obtained by multiplying the vector with the projection matrix $\mathbf{P} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$
 - (D) Three orthogonal vectors in \mathbb{R}^4 can be constructed by the Gram-Schmidt procedure from the vectors $[1, -1, 0, 0]^{\mathsf{T}}$, $[0, 1, -1, 0]^{\mathsf{T}}$ and $[1, 0, 0, -1]^{\mathsf{T}}$.
 - (E) None of the above is true.

5. Let \mathcal{P}_n be the set of polynomials in x with degree at most n and with real-valued coefficients. For any $u(x) = c_0 + c_1 x + \cdots + c_n x^n$ and $v(x) = d_0 + d_1 x + \cdots + d_n x^n$ in \mathcal{P}_n , define the following inner product

$$\langle u(x), v(x) \rangle = c_0 d_0 + c_1 d_1 + \dots + c_n d_n.$$

Note that \mathcal{P}_n can be regarded as a normed vector space. Which of the following statements is/are true?

- (A) \mathcal{P}_2 is a subspace of \mathcal{P}_3 .
- (B) The norm of $1 + x + x^2$ is 3 in \mathcal{P}_2 .
- (C) The set $\{1, x, x^2\}$ can be an orthonormal basis for \mathcal{P}_2 .
- (D) The operation $u(x) \mapsto u(x)/x$ maps elements from \mathcal{P}_n to \mathcal{P}_{n-1} .
- (E) None of the above is true.

類組:電機類 科目:工程數學 C(3005)

共16頁第4頁

6. Which of the following statements about vector space is/are true?

- (A) A vector is an arrow in three-dimensional space.
- (B) A subset \mathcal{H} of a vector space \mathcal{V} is a subspace of \mathcal{V} if the zero vector is in \mathcal{H} .
- (C) \mathbb{R}^2 is a subspace of \mathbb{R}^3 .
- (D) Let \mathcal{P}_n be the set of polynomials $p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$ with degree at most n and coefficients $a_0, \ldots, a_n \in \mathbb{R}$. Then, the set of polynomials with degree at most 3 and integer coefficients, is a subspace of \mathcal{P}_5 .
- (E) None of the above is true.

7. Which of the following statements about the multiplicative inverse of square matrices is/are true?

- (A) The columns of an invertible matrix in $\mathbb{R}^{n\times n}$ form a basis for \mathbb{R}^n .
- (B) Let **A** and **P** be square matrices of the same size. Suppose that **P** is invertible with its multiplicative inverse \mathbf{P}^{-1} . Then $\det(\mathbf{P}\mathbf{A}\mathbf{P}^{-1}) = \det(\mathbf{A})$.
- (C) Let $\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathbb{R}^{n \times n}$ be matrices and suppose that matrices \mathbf{A} , \mathbf{C} and $(\mathbf{A} \mathbf{A}\mathbf{C})$ are invertible with multiplicative inverses respectively \mathbf{A}^{-1} , \mathbf{C}^{-1} and $(\mathbf{A} \mathbf{A}\mathbf{C})^{-1}$. If $(\mathbf{A} \mathbf{A}\mathbf{C})^{-1} = \mathbf{C}^{-1}\mathbf{B}$, then \mathbf{B} must be invertible.

(D) The matrix
$$\begin{bmatrix} 2 & 2 & 8 & -2 \\ 3 & 5 & 8 & -3 \\ -2 & -6 & 3 & 2 \\ 0 & -1 & 2 & 1 \end{bmatrix}$$
 is invertible.

(E) None of the above is true.

類組:電機類 科目:工程數學 C(3005)

共 16 頁 第 5 頁

- 8. Which of the following statements about determinant is/are true?
 - (A) The determinant of a triangular matrix is the sum of the entries on the main diagonal.

(B)

$$\det \left(\begin{bmatrix} 1 & 3 & 2 & 4 & 0 \\ 9 & 0 & -4 & 1 & 0 \\ -8 & 5 & -6 & 7 & 1 \\ 2 & 0 & 0 & 0 & 0 \\ -4 & 2 & 3 & 2 & 0 \end{bmatrix} \right) = 6$$

- (C) Let $U \in \mathbb{R}^{n \times n}$ be such that $U^{\top}U = I_n$. Then det(U) equals either 1 or -1.
- (D) Replacing a row of a square matrix by the sum of itself and a multiple of another row changes the determinant of the matrix.
- (E) None of the above is true.

- 9. Which of the following statements about linear independence is/are true?
 - (A) If S is a set of linearly dependent vectors, then each vector in S is a linear combination of other vectors in S.
 - (B) The columns of matrix $\begin{bmatrix} 0 & 4 & -3 & 1 \\ 1 & -7 & 5 & -2 \\ 5 & -5 & 7 & -4 \end{bmatrix}$ form a linearly independent set in \mathbb{R}^3 .
 - (C) If the matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ satisfies that for any vector $\underline{b} \in \mathbb{R}^m$ the equation $\mathbf{A}\underline{x} = \underline{b}$ has at most one solution to the unknown \underline{x} , then the columns of \mathbf{A} must be linearly independent.
 - (D) If the columns of a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ span \mathbb{R}^n , then they are linearly independent.
 - (E) None of the above is true.

類組:電機類 科目:工程數學 C(3005)

共 16 頁 第 6 頁

- 10. Which of the following statements about linear transformation is/are true?
 - (A) The transformation T(x,y)=(3x-2y,x+3,6y) is not linear.
 - (B) A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is onto if for each vector $\underline{b} \in \mathbb{R}^m$ there exists at most one vector $\underline{x} \in \mathbb{R}^n$ such that $T(\underline{x}) = \underline{b}$.
 - (C) If $\mathbf{A} \in \mathbb{R}^{m \times n}$ is a matrix with m > n, then the transformation $T(\underline{x}) = \mathbf{A}\underline{x}$ cannot be one-to-one.
 - (D) An affine transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ in the form of $T(\underline{x}) = \mathbf{A}\underline{x} + \underline{b}$ with $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\underline{b} \in \mathbb{R}^m$ is not a linear transformation when $\underline{b} \neq \underline{0}$.
 - (E) None of the above is true.

類組: 電機類 科目: 工程數學 C(3005)

共 16 頁 第 7 頁

11. The Bernoulli equation

$$2xy'(x) + (y(x))^3 xe^{-2x} = 2xy(x)$$

with the condition y(1) = e can be solved by the substitution $v(x) = (y(x))^{-2}$. Which of the following statements is/are true?

- (A) $y(x) = xe^x$
- (B) $v(x) = xe^{-2x}$
- (C) $x(y(x))^2 = e^{2x}$
- (D) The differential equation after substitution is a linear differential equation for the new variable v.
- (E) None of the above is true.

類組:<u>電機類</u> 科目:<u>工程數學 C(3005)</u>

共16頁第8頁

12. For the homogeneous second order linear differential equation

$$4x^2y''(x) - 4xy'(x) + 3y(x) = 0,$$

if given one solution $y_1(x) = \sqrt{x}$, the other linearly independent solution $y_2(x)$ can then be derived by setting y(x) equal to $y_2(x) = v(x)y_1(x)$ and solving for v(x). Which of the following statements is/are true?

- (A) v''(x) = 0
- (B) v'(x) = 0
- (C) $v'(x) = \frac{1}{x^2}$
- (D) $y(x) = \sqrt{x} + \frac{1}{\sqrt{x}}$ is a possible solution.
- (E) None of the above is true.

類組: 電機類 科目: 工程數學 C(3005)

共 16 頁 第 9 頁

13. Continue from Problem 12. Solve the non-homogeneous second order linear differential equation

$$4x^2y''(x) - 4xy'(x) + 3y(x) = 8x^{\frac{4}{3}}$$

by the variation of parameters, i.e., by setting the particular solution as

$$y_p(x) = u_1(x)y_1(x) + u_2(x)y_2(x)$$

where $y_1(x)$ and $y_2(x)$ are from Problem 12. Which of the following statements is/are true?

(A)
$$u_1(x) = 12x^{\frac{5}{6}}$$

(B)
$$u_1(x) = -\frac{12}{5}x^{\frac{5}{6}}$$

(C)
$$u_1'(x) = -2x^{-\frac{1}{6}}$$

(D)
$$y_p(x) = 72x^{\frac{4}{3}}$$

(E) None of the above is true.

類組:電機類 科目:工程數學 C(3005)

共16頁第10頁

14. The second order system

$$\begin{bmatrix} x''(t) \\ y''(t) \\ z''(t) \end{bmatrix} = \begin{bmatrix} -4 & 4 & 0 \\ 6 & -12 & 6 \\ 0 & 4 & -4 \end{bmatrix} \begin{bmatrix} x(t) \\ y(t) \\ z(t) \end{bmatrix}$$

can be transformed into an equivalent first order system

$$\begin{bmatrix} x_1'(t) \\ y_1'(t) \\ z_1'(t) \\ x_2'(t) \\ y_2'(t) \\ z_2'(t) \end{bmatrix} = \mathbf{A} \begin{bmatrix} x_1(t) \\ y_1(t) \\ z_1(t) \\ x_2(t) \\ y_2(t) \\ z_2(t) \end{bmatrix}$$

by introducing the functions

$$x_1(t) = x(t), \quad x_2(t) = x'(t),$$

 $y_1(t) = y(t), \quad y_2(t) = y'(t),$
 $z_1(t) = z(t), \quad z_2(t) = z'(t).$

Which of the following statements is/are true?

(A)

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 0 & -4 & 4 & 0 \\ 0 & 0 & 0 & 6 & -12 & 6 \\ 0 & 0 & 0 & 0 & 4 & -4 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

(B)

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ -4 & 4 & 0 & 0 & 0 & 0 \\ 6 & -12 & 6 & 0 & 0 & 0 \\ 0 & 4 & -4 & 0 & 0 & 0 \end{bmatrix}$$

- (C) 4 is an eigenvalue of A
- (D) 0 is an eigenvalue of A
- (E) None of the above is true.

類組: 電機類 科目: 工程數學 C(3005)

共16頁第11頁

- 15. Continue from Problem 14. Find the particular solution of the second order system with initial conditions x(0) = y(0) = z(0) = 0 and x'(0) = y'(0) = z'(0) = 12. Which of the following statements is/are true?
 - (A) x(t) = 12t
 - (B) $y(t) = 12t 2\sin(2t) + \sin(4t)$
 - (C) $z(t) = 12t + 2\sin(2t) \sin(4t)$
 - (D) x(t) = y(t) = z(t)
 - (E) None of the above is true.

類組:電機類 科目:工程數學 C(3005)

共16頁第12頁

16. For the following second order differential equation

$$2y''(t) - \frac{1}{t(t-1)}y'(t) + \frac{1}{(t-1)^2}y(t) = 0$$

let $y_1(t) = \sum_{n=0}^{\infty} a_n (t-t_0)^{r_1+n}$ and $y_2(t) = \sum_{n=0}^{\infty} b_n (t-t_0)^{r_2+n}$ be two linearly independent Frobenius series solutions for y(t) at $t=t_0$ for some $t_0 \in \mathbb{R}$. Assuming $r_1 \geq r_2$, which of the following statements is/are true?

(A)
$$r_1 = 0$$
 for $t_0 = 0$

(B)
$$r_2 = -\frac{1}{2}$$
 for $t_0 = 0$

(C)
$$r_1 = 1$$
 for $t_0 = 1$

(D)
$$r_2 = \frac{1}{2}$$
 for $t_0 = 1$

(E) None of the above is true.

類組: 電機類 科目: 工程數學 C(3005)

共16頁第13頁

17. Consider the following differential equation defined for all $t \in \mathbb{R}$

$$y'(t) - 4y(t) + 4 \int_0^t \tau e^{\tau} y(t - \tau) d\tau = 9$$

subject to the condition y(0) = 3. Which of the following statements is/are true regarding the solution y(t) and its power series representation $y(t) = \sum_{n=0}^{\infty} y_n t^n$?

- (A) The radius of convergence of the power series equals 5.
- (B) $y_1 = 21$
- (C) $y_2 = 42$
- (D) $y\left(-\frac{1}{2}\right) = \frac{3}{2}$
- (E) None of the above is true.

類組:電機類 科目:工程數學 C(3005)

共16 頁 第14 頁

- 18. Continue from Problem 17. Let Y(s) be the <u>unilateral</u> Laplace transform of y(t) for $t \ge 0$. Which of the following statements is/are true?
 - (A) Y(s) exists for $Re\{s\} > 2$
 - (B) $Y(3) = \frac{137}{9}$
 - (C) $Y(4) = \frac{179}{16}$
 - (D) $Y(5) = \frac{96}{25}$
 - (E) None of the above is true.

類組:電機類 科目:工程數學 C(3005)

共 16 頁 第 15 頁

19. Use the method of separation of variables to solve the following partial differential equation for the function g(x, y)

$$\frac{\partial^2}{\partial x^2}g(x,y) = \frac{\partial^2}{\partial y^2}g(x,y)$$

defined for $0 \le x \le 3$ and $-3 \le y \le 3$, subject to conditions

$$g(0, y) = g(3, y) = 0$$
$$g(x, 0) = x(3 - x)$$
$$g(x, y) = g(x, -y)$$

With the following Fourier series

$$f(x) = \sum_{n=0}^{\infty} \left[a_n \cos \left(\frac{2\pi nx}{3} \right) + b_n \sin \left(\frac{2\pi nx}{3} \right) \right]$$

that is a periodic function in x with period equal to 3 and that equals g(x,0) for $x \in (0,3)$, which of the following statements is/are true regarding the values of a_n and b_n ?

- (A) $a_4 = \frac{8}{3\pi^2}$
- (B) $b_4 = -\frac{9}{16\pi^2}$
- (C) $a_1 b_1 = -\frac{9}{\pi^2}$
- (D) $a_2 + b_2 = -\frac{9}{4\pi^2}$
- (E) None of the above is true.

類組: 電機類 科目: 工程數學 C(3005)

共16頁第16頁

20. Continue from Problem 19. Which of the following statements is/are true regarding the solution g(x,y)?

(A)
$$g(\frac{1}{2}, \frac{1}{2}) = \frac{5}{8}$$

(B)
$$g(1,1) = 1$$

(C)
$$g(\frac{3}{2}, \frac{3}{2}) = 0$$

(D)
$$g(2,-2) = 2e^{-2}$$

(E) None of the above is true.