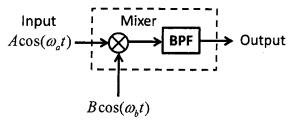
台灣聯合大學系統 109 學年度碩士班招生考試試題

類組:電機類 科目:工程數學 A(3003)

共2頁第1頁

所有試題皆為計算題,應詳列計算過程,無計算過程者不予計分。


- \(\tau(10\%)\) Please solve
$$\frac{d^2y}{dx^2} - \frac{2}{x}\frac{dy}{dx} + (\frac{2}{x^2} - 1)y = 4x^2e^x$$
.

- \equiv \((10\%) Given $A = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$, please find the fundamental matrix e^{At} with Cayley-Hamilton theorem/method of undetermined coefficients.
- \equiv \(\text{(10%) Suppose } g(s)\) is the Laplace transform of f(t). In other words, $g(s) = L\{f(t)\}$ and $f(t) = L^{-1}\{g(s)\}$. Suppose g(s) is given by $g(s) = \frac{\exp(\exp(-s))}{s}$ (note: $\exp(-s) = e^{-s}$), please find f(4.5).
- \square · (10%) Suppose $f_c(\omega)$ is cosine transform of f(x) and is given by $f_c(\omega) = \frac{1}{\sqrt{2a}} \cos\left(\frac{\omega^2}{4a} + \frac{\pi}{4}\right), \text{ please find the inverse transform } f(x) \text{ of } f_c(\omega). \text{ Hint:}$

you may use the following definite integral:

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$

- Ξ (12%) A "mixer" is an RF electric circuit that is commonly used in communication systems to shift the EM wave's frequency to a desired frequency band by multiplying an input sinusoidal wave with another sinusoidal wave. The configuration of a mixer is simply a combination of an electric multiplier and a band-pass filter (BPF) as shown in the following diagram. Assume the input vector space is generated by n input sinusoidal waves with the same non-zero amplitude A, but different frequencies, $\omega_1, \omega_2, \ldots, \omega_n$, and the output vector space is generated by these n "down-converted" sinusoidal waves. Note: "down-convert" means the frequency is reduced.
 - (-) (5%) Show that the input n signals are linearly independent.
 - (二) (7%) Please verify that if this mixer performs a linear transformation in this system.

注意:背面有試題

類組: 電機類 科目: 工程數學 A(3003)

共_2 頁 第 2 頁

六、(13%) Fourier series says that any periodic function can be expressed as a linear combination of infinite harmonic cosine and sine functions.

- (--) (8%) If the period of a set of periodic functions is 2π , what is the orthonormal basis of the vector space that these periodic functions belong to? You have to show the vectors in the basis are orthonormal to get full credit.
- ($\stackrel{\frown}{}$) (5%) Find a vector g(x) in a subspace spanned by only $\{1, \cos(x), \cos(2x), \sin(x), \sin(2x)\}$ so that g(x) has the shortest distance to the function f(x) = x in the interval $[-\pi, \pi]$.

Note: In this problem, you may need:

$$\int x \sin ax dx = -\frac{x}{a} \cos ax + \frac{1}{a^2} \sin ax \quad \text{and} \quad \int x \cos ax dx = \frac{x}{a} \sin ax + \frac{1}{a^2} \cos ax$$

 \pm \((10%) Let a linear equation system Ax = b with its coefficient matrix:

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 3 & 2 \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

- (-) (6%) Please find a lower triangular matrix L and an upper triangular matrix U so that matrix A can be represented as a product of LU.
- $(\stackrel{\frown}{})$ (4%) Apply the result in $(\stackrel{\frown}{})$ to solve the solution of Ax = b.

/\ \(\) (10%) Given $f(z) = \frac{z}{|z|}$, find u and v such that f(z) = u(x, y) + iv(x, y); determine where f is differentiable and where f is not.

九、(5%) Expand $\frac{2z}{9+z^2}$ in Laurent series with center z=3i in the neighborhood. Write down at least the first three terms. Determine the precise region of convergence.

十、(10%)

- (-) (5%) Find all zeros of $\cos z$ and show that all these are simple zeros.
- ($\stackrel{\frown}{}$) (5%) Evaluate $\oint_C \frac{z}{\cos z} dz$ where C: |z| = 5, counter-clockwise.