台灣聯合大學系統108學年度碩士班招生考試試題

類組: <u>電機類</u> 科目: <u>工程數學 D(3006)</u>

共 う 頁 第 _ _ 頁

※請在答案卷內作答

(各計算題應詳列計算過程,無計算過程者不予計分)

- 一. (15分,計算題)
- (一)(7分) Consider a second-order system described by the following differential equation $x'' + 2\zeta\omega_n x' + \omega_n^2 x = f(t)$, $\omega_n > 0$, $0 \le \zeta < 1$. We assume that the system is initially passive: x(0) = x'(0) = 0. Find the transfer function H(s) = X(s)/F(s) and the unit impulse response $h(t) = \mathcal{L}^{-1}\{H(s)\}$ if we define f(t) and x(t) are the input and output of the system, respectively.

(二)(8分) Solve
$$y' + y = g(t)$$
, $y(0) = 5$, where $g(t) = \begin{cases} 0 & 0 \le t < \pi \\ 3 \cos t & 0 \le t \le t \end{cases}$

二.(15分,計算題)

Let
$$e^{At} = \begin{bmatrix} (t+1)e^{-t} & (t+1)e^{-t} - e^{-2t} & e^{-t} - e^{-2t} \\ -te^{-t} & -te^{-t} + e^{-2t} & e^{-2t} - e^{-t} \\ te^{-t} & te^{-t} & e^{-t} \end{bmatrix}$$

(-)(6分) Find A.

(二)(4 分) Solve the initial-value problem
$$\vec{x}'(t) = A\vec{x}(t)$$
, $\vec{x}(0) = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$.

(三)(5分) Find a particular solution $\vec{x}_p(t)$ of the linear system

$$\vec{x}'(t) = A\vec{x}(t) + \begin{pmatrix} 1\\0\\0 \end{pmatrix}$$

注:背面有試題

類組:電機類 科目:工程數學 D(3006)

共一页第一页

※請在答案卷內作答

(各計算題應詳列計算過程,無計算過程者不予計分)

三.(10分,計算題)

Find a formal Fourier series solution of the endpoint value problem

$$\frac{1}{16}\ddot{x} + 4x(t) = f(t), x'(0) = 0, x'(1) = 0 \text{ and } f(t) = \pi t, 0 < t < 1$$

四. (10分,計算題)

(一)(5 分) Find a solution $y_1(x) = x^r \sum_{n=0}^{\infty} c_n x^n$ ($c_0 = 1, x > 0$) of the equation $x^3 y'' - x y' + y = 0$

(二)(5 分) Use the reduction of order method to find the second solution $y_2(x)$.

- 五. $(8 \,)$ 計算題) Find the best least square fit by a linear function to the data $\{(-1,0),(0,1),(2,3),(3,9)\}$.
- 六. (14 分, 計算題) Let $A = U\Sigma V^T$, where $U = [\boldsymbol{u}_1, \boldsymbol{u}_2, \boldsymbol{u}_3, \boldsymbol{u}_4] \in \mathbb{R}^{4\times 4}$ and $V = [\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3] \in \mathbb{R}^{3\times 3}$ are orthogonal matrices, and

$$\Sigma = \begin{bmatrix} 12 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

(-)(8 分) Please find N(A), R(A), $N(A^T)$, and $R(A^T)$.

(二)(6 分) Find all the eigenvalues of A^TA and their corresponding eigenspaces.

注:背面有試題

台灣聯合大學系統 108 學年度碩士班招生考試試題

類組:<u>電機類</u>科目:<u>工程數學 D(3006)</u>

共力頁第分頁

※請在答案卷內作答

In the followings, we denote $\mathbb{R}^{n\times n}$ the set of $n\times n$ matrices with real coefficients, A^T the transpose of a matrix A, N(A) the null space of A, and R(A) the range space of A.

- 七. (每子題 4分) For each statement that follows, please answer true or false. In the case of a true statement, you **MUST** explain or prove your answer. In the case of a false statement, a counterexample **SHOULD** be provided.
 - (-) Let $A \in \mathbb{R}^{m \times n}$. Then $\operatorname{rank}(A) = \operatorname{rank}(A^T A)$.
 - ($\stackrel{\frown}{}$) Let $A \in \mathbb{R}^{n \times n}$ and $A^m = 0$ for some positive integer m. Then all the eigenvalues of A are zero.
- (Ξ) Let A be a nonsingular matrix and $A^{-1} = A$. Then A is either the identity matrix I or -I.
- (四) Any two square matrices with the same trace and determinant are similar.
- (Ξ) Any two similar matrices have the same determinant and trace.
- (六) Let $A \in \mathbb{R}^{m \times n}$ and $N(A) = \{0\}$. Then the column vectors of A are linearly independent.
- (\pm) Let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times m}$. Then AB = 0 implies that BA = 0.