共_//頁第_/_頁

※請在答案卡內作答

- •本測驗試題為<u>多選題(答案可能有一個或多個</u>),請選出所有正確或最適當的答案, 並請用 2B 鉛筆作答於答案卡。
- •共二十題,每題五分。每題 ABCDE 每一選項單獨計分;每一選項的個別分數 為一分,答錯倒扣一分。

Notation: In the following questions, boldface letters such as \mathbf{a} , \mathbf{b} , etc. denote columns vectors of proper length; boldface letters such as \mathbf{A} , \mathbf{B} etc. denote matrices of proper size; \mathbf{A}^T means the transpose of matrix \mathbf{A} , and \mathbf{A}^H is the Hermitian transpose (a.k.a. conjugate transpose) of \mathbf{A} . \mathbf{I}_n is the $(n \times n)$ identity matrix. $\|\mathbf{a}\|_2$ means the Euclidean norm of vector \mathbf{a} . \mathbb{R} is the usual set of all real numbers; \mathbb{C} is the usual set of all complex numbers. $\mathbb{R}^{m \times n}$ means the set of all $(m \times n)$ real-valued matrix, and similarly for $\mathbb{C}^{m \times n}$. The symbol $\mathcal{L}\{y(t)\}$ denotes the Laplace transform of y(t).

- Let **A** and **B** be real-valued matrices. Which of the following statement is/are true?
 - (A). $(AB)^2 = A^2B^2$.
 - (B). If $\mathbf{AB} = \mathbf{B}$ then $\mathbf{A} = \mathbf{I}_n$.
 - (C). A^{-1} can be <u>asymmetric</u> if A is symmetric.
 - (D). If **A** and **B** are invertible, then **A**+**B** is invertible.
 - (E). None of the above is true.

共11頁第2頁

※請在答案卡內作答

- $\dot{}$ Consider the vector space S consisting of all degree-2 polynomials with real coefficients, i.e., polynomials in the form of $c_0 + c_1t + c_2t^2$. Define the inner product between two vectors as $< c_0 + c_1t + c_2t^2$, $d_0 + d_1t + d_2t^2 > = c_0d_0 + c_1d_1 + c_2d_2$. Which of the following statement is/are true?
 - (A). The dimension of S is 2.
 - (B). The polynomials 1 + t, t and $1 + t^2$ are linearly independent.
 - (C). The set $\{1 + t, t, 1 + t^2\}$ can be a basis for S.
 - (D). The two polynomials $1 2t + t^2$, and $-1 + 2t t^2$ are orthogonal to each other.
 - (E). None of the above is true.

- \equiv Let **A** be an $m \times n$ real-valued matrix of rank r, and **b** be an $m \times 1$ real-valued vector. Which of the following statement is/are true?
 - (A). The equation Ax = b has non-trivial solutions if n > r > 1 and **b** is all-zero.
 - (B). The equation Ax = b has solutions if b belongs to the column space of A.
 - (C). The equation $\mathbf{A}\mathbf{x} = \mathbf{b}$ has only one solution when r = m.
 - (D). The dimension of the nullspace of A is 0 if the dimension of the row space of A is r.
 - (E). None of the above is true.

台灣聯合大學系統 108 學年度碩士班招生考試試題

類組:<u>電機類</u> 科目:<u>工程數學 C(3005)</u>

共_[|頁第3頁

※請在答案卡內作答

EST > Let A be a 6×6 block-diagonal matrix
$$\begin{bmatrix}
 B & 0 & 0 \\
 0 & 2B & 0 \\
 0 & 0 & 3B
 \end{bmatrix}$$
, where B =
$$\begin{bmatrix}
 1 & 1 \\
 -1 & 1
 \end{bmatrix}$$
 and

0's are 2×2 zero matrices. Furthermore, the vector $\mathbf{b} = [1, 2, 3, 4, 5, 6]^T$. Which of the following statement is/are true?

- (A). $\mathbf{A}^T = -\mathbf{A}$.
- (B). A⁻¹ is also a block-diagonal matrix.
- (C). The LU factorization of A will produce a diagonal matrix U.
- (D). Solve the equation Ax = b, then the solution's last entry is 11/6.
- (E). None of the above is true.

- £. Consider the vector space \mathbb{R}^4 . The vector $\mathbf{u} = [1, 1, 1, 1]^T$, $\mathbf{v} = [1, 1, -1, -1]^T$, and $\mathbf{w} = [1, -1, 1, -1]^T$. Which of the following statement is/are true?
 - (A). The matrix $P = uu^T$. Then Px produces the orthogonal projection of a vector x onto the line spanned by u.
 - (B). The matrix $\mathbf{Q} = \mathbf{v}\mathbf{v}^T$. Then $\mathbf{P}\mathbf{Q}$ is an all-zero matrix.
 - (C). The matrix A = [u, v, w] has orthogonal columns.
 - (D). Continue form part (C). If a vector **b** can be spanned by the columns of **A**, i.e., $\mathbf{b} = c_1 \mathbf{u} + c_2 \mathbf{v} + c_3 \mathbf{w}$, then $c_1 = \mathbf{u}^T \mathbf{b}/4$.
 - (E). None of the above is true.

共_1/ 頁第4頁

※請在答案卡內作答

- \Rightarrow Let $A=A^T$ and assume its eigenvalue can be any element in \mathbb{R} . The eigenspace is the same as
 - (A). Column space only
 - (B). Row and column space only
 - (C). Row and nullspace only
 - (D). All of the fundamental subspaces
 - (E). None of the above is true.

- + Let $\mathbf{A}^H \mathbf{A} = \mathbf{A} \mathbf{A}^H = \mathbf{I}_n$. λ_i denotes the *i*th eigenvalue of \mathbf{A} , and $|\cdot|$ denote the magnitude operator. Which of the following statement is/are true?
 - (A). λ_i equals to its pivots, $\forall i$.
 - (B). λ_i is real, $\forall i$.
 - (C). $|\lambda_i|$ equals to \sqrt{n} only, $\forall i$.
 - (D). $|\lambda_i|$ equals to 1 only, $\forall i$.
 - (E). None of the above is true.

類組: 電機類 科目: 工程數學 C(3005)

※請在答案卡內作答

$$\wedge$$
 If $det(\mathbf{A}) = det(2\mathbf{A})$, then

- (A). A is the identity matrix
- (B). A has a zero row
- (C). A is non-invertible
- (D). $\mathbf{A} = \mathbf{A}^T$
- (E). None of the above is true.

 \hbar . Let T be a differential operator T(f) = df/dx. Given the basis $\{1, x, \sin(3x),$ cos(3x). What is the matrix **A** for the operator T?

(A).
$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -3 \\ 0 & 0 & -3 & 0 \end{bmatrix}$$

(B).
$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -3 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 \end{bmatrix}$$
(C).
$$\mathbf{A} = \begin{bmatrix} 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & -3 \\ 0 & 0 & -2 & 0 \end{bmatrix}$$

(C).
$$\mathbf{A} = \begin{bmatrix} 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & -3 \\ 0 & 0 & -2 & 0 \end{bmatrix}$$

(D).
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 \\ 3 & 0 & 0 \\ 0 & 0 & -2 \\ 0 & -3 & 0 \end{bmatrix}$$

(E). None of the above is true.

共 11 頁第6頁

※請在答案卡內作答

+ Let
$$\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix} \neq \mathbf{0}_{2 \times 1}$$
. The minimum of $\frac{\mathbf{x}^T \begin{bmatrix} 3 & 5 \\ 5 & 3 \end{bmatrix} \mathbf{x}}{\mathbf{x}^T \mathbf{x}}$ with respect to \mathbf{x} is

- (A). $2||\mathbf{x}||_2$
- (B). 3x+5y
- (C). -4
- (D). -2
- (E). None of the above is true.

- +- Solving the first-order differential equation $xy'(x) = y(x) + \sqrt{x^2 + y^2}$ with the initial condition y(3) = 4. Which of the following statements is/are true?
 - (A). It is a nonlinear differential equation.
 - (B). The particular solution is $y + \sqrt{x^2 + y^2} = x^2$.
 - (C). The particular solution is $y = \frac{1}{2}(x^2 1)$.
 - (D). y(0) = 0.
 - (E). None of the above is true.

共 // 頁 第 17 頁

※請在答案卡內作答

Solve the following nonhomogeneous second-order differential equation $(1-x)y''(x) + xy'(x) - y(x) = 2(x-1)^2 e^{-x}$ by the variational method, i.e. $y_P(x) = u_1(x)y_1(x) + u_2(x)y_2(x)$, where $y_I(x)$ and $y_2(x)$ are solutions of the associated homogeneous equation given by x and e^x , respectively. Which of the following statements is/are true?

(A).
$$u_1'(x) = -2(x-1)e^{-x}$$
.

(B).
$$u_1'(x) = 2e^{-x}$$
.

(C).
$$u_2'(x) = 2x(x-1)e^{-2x}$$
.

(D).
$$u_2'(x) = -2xe^{-2x}$$
.

(E). None of the above is true.

$$+ = \cdot \quad \text{The linear system} \begin{bmatrix} x_1'(t) \\ x_2'(t) \\ x_3'(t) \\ x_4'(t) \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 6 & 10 & 0 & 0 \\ 10 & 6 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \\ x_4(t) \end{bmatrix} \text{ can be solved by}$$

finding the eigenvalues of its coefficient matrix. Regarding these eigenvalues, which of the following statements is/are true?

- (A). All eigenvalues are real.
- (B). All eigenvalues are pure imaginary.
- (C). The 4 eigenvalues of -2, 2, -4 and 4.
- (D). The 4 eigenvalues are -2i, 2i, -4i, and 4i
- (E). None of the above is true.

共_[] 東 第 8 頁

※請在答案卡內作答

+ $rac{1}{2}$ Continued from Problem + $rac{1}{2}$, the particular solution that satisfies the initial conditions $x_1(0) = x_2(0) = 1$, $x_3(0) = -6$, $x_4(0) = -2$ is

(A).
$$x_1(t) = e^{-4t} - \sin(2t)$$

(B).
$$x_2(t) = e^{-4t} + \sin(2t)$$

(C).
$$x_3(t) = -4e^{-4t} - 2\cos(2t)$$

(D).
$$x_4(t) = -4e^{-4t} + 2\cos(2t)$$

(E). None of the above is true.

+五、 Use the Laplace transform and the convolution theorem to solve the following integro-differential equation, where

$$y'(t) = \int_0^t y(u) \cos(t - u) du$$
, $y(0) = 1$.

Which of the following statements is/are true?

(A).
$$\mathcal{L}{y(t)} = \frac{1}{s} + \frac{s}{s^2 + 2}$$
.

(B).
$$\mathcal{L}{y(t)} = \frac{1}{s} + \frac{s}{s^2 + 1}$$
.

(C).
$$y(t) = \frac{1}{2}e^t + \frac{1}{2}\cos(2t)$$
.

(D).
$$y'(t) = e^t - 2\sin(2t)$$
.

(E). None of the above is true.

共_// 頁 第____ 頁

※請在答案卡內作答

十六、 Consider the following differential equation:

$$(x^2 - 4)y'' + 3xy' + y = 0$$

with y(0) = 4 and y'(0) = 1. The series solution is $y(x) = \sum_{n=0}^{\infty} c_n x^n$.

Which of the following statements is/are true?

- (A). The radius of convergence for the series solution is 2.
- (B). There is no singular point.
- (C). There are two linearly independent solutions.
- (D). $c_4 = \frac{3}{32}$.
- (E). None of the above is true.

+七、 Consider the following differential equation:

$$xy'' + 2y' + xy = 0$$

with y(0) = 1. Which of the following statements is/are true?

- (A). The radius of convergence for the series solution is 1.
- (B). There is no singular point.
- (C). There are two linearly independent solutions.
- (D). $y(\pi) = 0$.
- (E). None of the above is true.

共 [] 頁 第 [0 頁

※請在答案卡內作答

 $+ \wedge$ Consider F(t) is a period-4 function with F(t) = 5t for -2 < t < 2.

Find its Fourier series $f(t) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi t}{L} + b_n \sin \frac{n\pi t}{L} \right)$. Which of the

following statements is/are true?

- (A). L = 2.
- (B). $a_0 = 0$.
- (C). $a_1 = \frac{10}{\pi}$.
- (D). $b_2 = -\frac{10}{\pi}$.
- (E). None of the above is true.

十九、 Continued from Problem +八, the steady solution of x'' + 10x = F(t)

is $x(t) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi t}{D}$. Which of the following statements is/are true?

- (A). D = 4.
- (B). The dominant term is the n = 2 term.
- (C). The dominant frequency is $\sqrt{10}$.
- (D). The dominant frequency is π .
- (E). None of the above is true.

台灣聯合大學系統 108 學年度碩士班招生考試試題

類組:<u>電機類</u> 科目:<u>工程數學 C(3005)</u>

※請在答案卡內作答

=+ Consider the endpoint problem,

$$y'' + \lambda y = 0$$
, $y(0) = y(L) = 0$, $L > 0$.

Determine the eigenvalues and associated eigenfunctions. Which of the following statements is/are true?

- (A). Ax + B is a non-trivial solution, where A and B are constants.
- (B). All eigenvalues are non-negative.
- (C). There is at least one eigenvalue shared by two linearly independent eigenfunctions.
- (D). 0 is one of the eigenvalues.
- (E). None of the above is true.