類組:<u>電機類</u> 科目:<u>工程數學B(3004)</u>

共_10_頁第1_頁

※請在答案卡內作答

- 本測驗試題為多選題(答案可能有一個或多個),請選出所有正確或最適當的答案,並請用 2B 鉛筆作答於答案卡。
- 共二十題,每題五分。每題 ABCDE 每一選項單獨計分。每一選項的個別分數為一分,答錯倒扣一分。

- Consider a linear system $x_1 + 4x_2 = 3$ $3x_1 + hx_2 = k$. Which of the following statements is/are true?
 - (A) When h = 12 and k = 9, the system is inconsistent.
 - (B) When h = 12 and k = 9, the system has many solutions.
 - (C) When h = 12 and $k \neq 9$, the system is consistent.
 - (D) When h = 12 and $k \neq 9$, the system has at least one solution.
 - (E) When $h \neq 12$, the system has a unique solution.
- $\stackrel{\sim}{=}$ Denote det A as the determinant of the matrix A, and denote A^{-1} as the inverse of the matrix A. Let A, B, and P be square matrices. Which of the following statements is/are true?
 - (A) It is always true that $\det AB = \det BA$.
 - (B) If the columns of A are linearly dependent, then det A = 0.
 - (C) It is always true that $\det(A + B) = \det A + \det B$.
 - (D) If A is invertible, then det $A^{-1} = \frac{1}{\det A}$.
 - (E) Suppose that *P* is invertible. Then det $(PAP^{-1}) = \det A$.

共 10 頁 第 2 頁

※請在答案卡內作答

$$\equiv$$
 \text{ Let } $A = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix}$ and define a transformation $T : \mathbb{R}^2 \to \mathbb{R}^3$ by $T(\mathbf{x}) = A\mathbf{x}$. Which

of the following statements is/are true?

(A) The image of
$$\mathbf{x} = \begin{bmatrix} 1.5 \\ -0.5 \end{bmatrix}$$
 under T is $\begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix}$.

- (B) There is exactly one **x** whose image under T is $\begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}$.
- (C) The vector **b** is in the range of T if **b** is the image of some \mathbf{x} in \mathbb{R}^2 .
- (D) The vector **b** is in the range of T if the system A**x** = **b** is inconsistent.
- (E) The vector $\begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix}$ is not in the range of T.
- The set \mathbb{P}_n of polynomials of degree at most $n, n \ge 0$, consists of all polynomials of the form $\mathbf{p}(t) = a_0 + a_1t + a_2t^2 + ... + a_nt^n$. Let $\mathbf{p}_1(t) = 2 + 2t^2$, $\mathbf{p}_2(t) = -t + 3t^2$, and $\mathbf{p}_3(t) = 1 + t 3t^2$. Which of the following statements is/are true?

 (A) $\mathbf{p}_1(t)$ is in \mathbb{P}_3 .
 - (B) To see whether the polynomials $\mathbf{p}_1(t)$, $\mathbf{p}_2(t)$, and $\mathbf{p}_3(t)$ form a basis for \mathbb{P}_2 , we can place the coordinate vectors of the polynomials into the columns of a matrix and reduce the matrix to echelon form. If the resulting matrix is not invertible, then the polynomials $\mathbf{p}_1(t)$, $\mathbf{p}_2(t)$, and $\mathbf{p}_3(t)$ form a basis for \mathbb{P}_2 .
 - (C) Polynomials $\mathbf{p}_1(t)$, $\mathbf{p}_2(t)$, and $\mathbf{p}_3(t)$ form a basis for \mathbb{P}_2 .
 - (D) Consider the basis $\mathfrak{B} = \{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ for \mathbb{P}_2 . Let the vector $[\mathbf{q}]_{\mathfrak{B}}$ be the \mathfrak{B} coordinate vector of \mathbf{q} . Given that $[\mathbf{q}]_{\mathfrak{B}} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$, \mathbf{q} in \mathbb{P}_2 is $2\mathbf{p}_1 \mathbf{p}_2 + \mathbf{p}_3$.
 - (E) Following (D), $q(t) = 2 t + t^2$.

共10頁第3頁

※請在答案卡內作答

- £ Suppose that a 6×3 matrix A has rank 3. Denote dim H as the dimension of a nonzero subspace H, Nul A as the null space of the matrix A, Row A as the column space of the matrix A, rank A as the rank of the matrix A, and A^{T} as the transpose of the matrix A. Which of the following statements is/are true?
 - (A) dim Row $A = \operatorname{rank} A$.
 - (B) dim Row $A = \operatorname{rank} A^T$.
 - (C) dim Nul A = 3.
 - (D) dim Row A = 6.
 - (E) rank $A^T = 3$.

Which of the following statements is/are true?

- (A)**v**₁ and **v**₂ are orthogonal.
- (B) The closest point to \mathbf{y} in the subspace W spanned by \mathbf{v}_1 and \mathbf{v}_2 is $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$
- (C) The closest point in W to y is the projection of y on W.
- (D) The distance from the point y in \mathbb{R}^4 to W is defined as the distance from y to the closest point in W.
- (E) The distance from y to the subspace of \mathbb{R}^4 spanned by v_1 and v_2 is 16.

類組:<u>電機類</u> 科目:<u>工程數學 B(3004)</u>

共_10 頁第4頁

※請在答案卡內作答

- \pm · Let A^{-1} be the inverse of the matrix A, A^{T} be the transpose of the matrix A, and I be the identity matrix. Which of the following statements about invertible matrices is/are true?
 - (A) If A is both diagonalizable and invertible, then so is A^{-1} .
 - (B) Suppose that A = QR, where R is an invertible matrix. Then A and Q have the same column space.
 - (C) Suppose that A and B are square matrices, B is invertible, and AB is invertible. Then A is invertible.
 - (D) Suppose that $A = PDQ^T$, where P and Q are $n \times n$ matrices with the property that $P^TP = I$ and $Q^TQ = I$, and D is a diagonal matrix with positive $\sigma_1, \ldots, \sigma_n$ on the diagonal. Then A is invertible.
 - (E) Let $A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} I & 0 \\ X & I \end{bmatrix} \begin{bmatrix} A_{11} & 0 \\ 0 & S \end{bmatrix} \begin{bmatrix} I & Y \\ 0 & I \end{bmatrix}$, where A_{11} , A_{12} , A_{21} , A_{22} , X, and Y are matrices, and $S = A_{22} A_{21}A_{11}^{-1}A_{12}$ is called the Schur complement of A_{11} . Suppose that A is invertible and A_{11} is invertible, then S is invertible.

類組:<u>電機類</u> 科目:<u>工程數學 B(3004)</u>

共_10_頁第5頁

※請在答案卡內作答

$$\wedge$$
 Let $A = \begin{bmatrix} 1 & -6 & 4 \\ -6 & 2 & -2 \\ 4 & -2 & -3 \end{bmatrix}$. Giving an orthogonal matrix P and a diagonal matrix D ,

we can orthogonally diagonalize A in the way $A = PDP^{-1}$, where P^{-1} is the inverse of P. Which of the following statements is/are true?

- (A) The smallest eigenvalue of A is -3.
- (B) For the smallest eigenvalue of A, a basis for the eigenspace is $\begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$. For the largest eigenvalue of A, a basis for the eigenspace is $\begin{bmatrix} -2 \\ -1 \\ 2 \end{bmatrix}$. For the third

eigenvalue of A, a basis for the eigenspace is $\begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$.

(C)
$$P$$
 can be constructed as $P = \begin{bmatrix} 1/3 & -2/3 & 2/3 \\ 2/3 & -1/3 & -2/3 \\ 2/3 & 2/3 & 1/3 \end{bmatrix}$.

- (D) D can be constructed as $D = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$, where a, b, and c are the eigenvalues of A.
- (E) $P^{-1} = P^{T} = \begin{bmatrix} 1/3 & 2/3 & 2/3 \\ -2/3 & -1/3 & 2/3 \\ 2/3 & -2/3 & 1/3 \end{bmatrix}$, where P^{T} is the transpose of P.

共 10 頁 第 6 頁

※請在答案卡內作答

$$λ$$
. Let the matrix $A = \begin{bmatrix} -3 & 2 \\ 6 & -4 \\ 6 & -4 \end{bmatrix}$. Let $λ$ be the eigenvalue of A , and A^T be the transpose

- of A. Which of the following statements is/are true?
 - (A) The characteristic polynomial of $A^{T}A$ is λ^{2} 117 λ .
 - (B) The singular values of A are 117 and 0.
 - (C) Any factorization $A = U\Sigma V^T$, with U and V orthogonal, $\Sigma = \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix}$, and positive diagonal entries in D, is called a singular value decomposition (SVD) of A.
 - (D) Following (C), the matrices U and V are uniquely determined by A, and the diagonal entries of Σ are the singular values of A.

(E) An SVD of
$$A$$
 is
$$\begin{bmatrix} -1/3 & 2/3 & 2/3 \\ 2/3 & -1/3 & 2/3 \\ 2/3 & 2/3 & -1/3 \end{bmatrix} \begin{bmatrix} 3\sqrt{13} & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 3/\sqrt{13} & 2/\sqrt{13} \\ -2/\sqrt{13} & 3/\sqrt{13} \end{bmatrix}.$$

- + . Which of the following statements about the properties of matrices is/are true?
 - (A) An $m \times n$ matrix with more rows than columns has full rank if and only if its columns are linearly dependent.
 - (B) Suppose that A is an $m \times n$ matrix such that for all \mathbf{b} in \mathbb{R}^m the equation $A\mathbf{x} = \mathbf{b}$ has at most one solution. Then the columns of A must be linearly dependent.
 - (C) λ is an eigenvalue of the matrix A if and only if λ is an eigenvalue of A^{-1} , the inverse of A.
 - (D) If the matrices A and B are both orthogonally diagonalizable and AB = BA, then AB is also orthogonally diagonalizable.
 - (E) The trace of a square matrix A, denoted by tr A, is the product of the diagonal entries in A. tr (FG) = tr (GF) for any two $n \times n$ matrices F and G.

台灣聯合大學系統 108 學年度碩士班招生考試試題

類組:<u>電機類</u> 科目:<u>工程數學 B(3004)</u>

共 10 頁 第7 頁

※請在答案卡內作答

+--. Let X be a continuous random variable that is uniformly distributed over (0,1) and $Y = -\ln(X)$. Which of the following statements is/are true?

- (A) P(X > 0.25) = 0.75.
- (B) $E[X^2] = \frac{2}{3}$.
- (C) $P(25X^2 20X + 3 > 0) > 0.55$.
- (D) E[Y] = 2.
- (E) $E[Y^2] = 2$.

+_. Let X be a Gaussian random variable such that E[X] = 1 and $E[(X-1)^2] = 4$. Let Y be a Gaussian random variable such that E[Y] = 0 and $E[Y^2] = 1$. In addition, X and Y are statistically independent. Let Z be a random variable such that Z = 2X + 3Y. Which of the following statements is/are true?

- (A) E[Z] = 2.
- (B) $E[Z^2] = 25$.
- (C) E[YZ] = 4.
- (D) Y^2 is an exponential random variable.
- (E) $P(Z \ge 2) = \frac{1}{2}$.

 $+\Xi$. Let X be a continuous random variable with probability density function f_X . In addition, $f_X(x) = \frac{1}{2\sqrt{x}}, \ \forall x \in (0,1]$. Furthermore, $P(X > 1) = P(X \le 0) = 0$. Moreover, $f_X(t) < \infty$, $\forall t \in (-\infty, \infty)$. Which of the following statements is/are true?

- (A) $P(X = \frac{4}{9}) = \frac{3}{4}$.
- (B) $\int_0^2 f_X(x) dx = \sqrt{2}$.
- (C) $\int_0^1 f_X(x) dx = 1$.
- (D) $E[X] = \frac{2}{3}$.
- (E) $P(X \in [\frac{1}{4}, \frac{9}{16}]) = \frac{1}{6}$.

共 10 頁 第 8 頁

※請在答案卡內作答

+ \square . Let $p \in (0,1)$ be a positive real number. Let X be a geometric random variable with PMF $p_X(k) = (1-p)^{k-1} \cdot p$, $\forall k \in \{1,2,3,...\}$. Which of the following statements is/are true?

- (A) When p = 0.6, P(X > 1) = 0.4.
- (B) $\sum_{k=3}^{\infty} (1-p)^{k-1} \cdot p = 1 2p + p^2$
- (C) When p = 0.8, E[X] = 5.
- (D) When p = 0.5, E[X|X > 1] = 3.
- (E) When p = 0.5, $P(X > 4|X > 1) = \frac{1}{16}$.

十五. Consider the famous hat problem. Suppose that n people throw their hats in a box and then each picks one hat at random. (Each hat can be picked by only one person, and each assignment of hats to persons is equally likely.) Let X be a random variable that represents the number of people that get back their own hat. Which of the following statements is/are true?

- (A) When n = 3, $P(X = 3) = \frac{1}{3}$.
- (B) When n = 3, $P(X = 1) = \frac{1}{2}$.
- (C) When n = 4, P(X = 3) = 0.
- (D) When n = 4, E[X] = 2.
- (E) When n = 5, E[X] = 1.

 $+\dot{\pi}$. Consider the famous hat problem as in the previous problem. Let X_i be a random variable that takes value 1 if the *i*th person selects his/her own hat, and takes value 0 otherwise. Let $cov(Y,Z) = E[Y \cdot Z] - E[Y] \cdot E[Z]$ be the covariance of two random variables Y and Z. Which of the following statements is/are true?

- (A) When n = 4, $cov(X_4, X_4)$ is $\frac{3}{16}$.
- (B) When n = 4, $cov(X_1, X_2) = \frac{1}{48}$.
- (C) When n = 4, $var(\sum_{k=1}^{4} X_k) = 2$.
- (D) When n = 4, X_1 and X_2 are statistically independent.
- (E) For any two random variables Y and Z, $cov(Y, Z) \ge 0$.

共 10 頁 第 9 頁

※請在答案卡內作答

+ \pm . Consider a continuous random variable X. Let $M_X(s) = \mathbb{E}[e^{sX}]$, $\forall s \in (-\infty, \infty)$. Which of the following statements is/are true?

- (A) If X is an exponential random variable with mean 2, $M_X(s) = \frac{0.5}{0.5-s}$, $\forall s < 0.5$.
- (B) $E[X] = \frac{dM_X(s)}{ds}|_{s=0}$.
- (C) $E[X^2] = -\frac{d^2 M_X(s)}{ds^2}|_{s=0}$
- (D) If X is a standard normal random variable, $M_X(s) = e^{s^2}$.
- (E) If X is a normal random variable such that E[X] = 0 and $E[X^2] = 4$, $M_X(s) = e^{2s^2}$.

+/\. Let X and Y be independent random variables that are uniformly distributed on the interval [0,1]. Define $Z=\frac{X}{Y}$. Let f_Z be the probability density function of Z and F_Z be the cumulative distribution function of Z. Which of the following statements is/are true?

- (A) $F_Z(\frac{1}{2}) = \frac{1}{4}$.
- (B) $F_Z(2) = \frac{1}{2}$.
- (C) $f_Z(\frac{1}{2}) = \frac{1}{4}$.
- (D) $f_Z(2) = \frac{1}{8}$.
- (E) $P(Z \ge 2) = P(Z \le 0.5)$.

台灣聯合大學系統 108 學年度碩士班招生考試試題

類組:<u>電機類</u> 科目:工程數學 B(3004)

共10頁第10頁

※請在答案卡內作答

+ \hbar . A defective coin minting machine produces coins whose probability of heads is a random variable X with CDF $F_X(x) = x^2$, $\forall x \in [0,1]$. A coin produced by this machine is selected and tossed twice, with successive tosses assumed independent. Let Ω be the sample space. Let Y_1 be a random variable that represents the number of heads in the first toss of the selected coin. Let Y_2 be a random variable that represents the number of heads in the first two tosses of the selected coin. Let A be the event that the first coin toss results in head. Namely, $A = \{Y_1 = 1\} = \{\omega \in \Omega | Y_1(\omega) = 1\}$. Let $f_{X|A}$ be the conditional PDF of X given event A. Which of the following statements is/are true?

- (A) $P(Y_1 = 1) = \frac{1}{2}$.
- (B) $P(Y_1 = 0) = \frac{1}{3}$.
- (C) $f_{X|A}(\frac{1}{2}) = \frac{4}{5}$.
- (D) $f_{X|A}(\frac{1}{3}) = \frac{1}{3}$.
- (E) $P(Y_2 = 0) = \frac{1}{6}$.
- <u>-+</u>. Which of the following statements is/are true?
- (A) If X is an exponential random variable with mean 1, then $P(X \ge a) \le \frac{1}{a}$, $\forall a > 0$.
- (B) If X is a standard normal random variable, then $P(X^2 + 2X + 1 \ge a) \le \frac{3}{a}$, $\forall a > 0$.
- (C) If X is a normal random variable such that E[X] = 1 and $E[X^2] = 4$, then $P(|X-1| \ge 2) \le \frac{3}{4}$.
- (D) If Y_1 , Y_2 ,... are independent and identically distributed random variables with mean 5, then $\lim_{n\to\infty} P(|5-\frac{1}{2n}\sum_{k=1}^n Y_k| \ge 0.01) = 0$.
- (E) If X_1 , X_2 ,... are independent Poisson random variables with variance 4 and $Y_n = \frac{\sqrt{n}}{2} \times (4 \frac{1}{n} \sum_{k=1}^{n} X_k)$, then $\lim_{n \to \infty} P(Y_n \le 1) \le 0.5$.