台灣聯合大學系統 107 學年度碩士班招生考試試題

類組:<u>電機類</u> 科目:<u>工程數學 A(3003)</u>

共3頁第1頁

※請在答案卷內作答

- 1. (5%) Find the general solution for $\frac{d^2y}{dx^2} + y = 2\cos x$
- 2. (5%) Find the Laplace transform for $f(t) = e^{2t} cost$
- 3. (5%) Find the Laplace transform for f(t) = t [t], where [t] is the largest integer that is not larger than t.
- 4. (5%) Find the inverse Laplace transform for $\frac{1}{s^3+1}$.
- 5. (5%) $A = \begin{pmatrix} 4 & -5 \\ 2 & -3 \end{pmatrix}$, find e^{At} by using Cayley-Hamilton theorem.

- 6. (6%) Evaluate the following integrals.
 - (a) $(2\%) \int_0^i z^2 dz$
 - (b) (2%) $\oint_C e^z dz$, where C: |Z| = 1, clockwise.
 - (c) (2%) $\oint_C \frac{1}{z-1} dz$, where C: |Z| = 5, clockwise.
- 7. (6%)

$$f(z) = \frac{1}{(z-1)(z-2)}$$

Integrate f(z) counter clockwise, $\oint_C f(z) dz$, around C_1 , C_2 , and C_3 .

- (a) (2%) $C_1: |z| = \frac{1}{2}$
- (b) (2%) C_2 : $|z| = \frac{3}{2}$
- (c) (2%) C_3 : $|z| = \frac{5}{2}$

類組: <u>電機類</u> 科目: <u>工程數學 A(3003)</u>

共3頁第2頁

※請在答案卷內作答

8. (6%)

$$z = x + jy$$

$$f(z)=z^2$$

, Calculate f'(z) and g'(z).

$$g(z) = |z|^2$$

9. (7%)

$$f(z) = z^2 e^{\frac{1}{z}}$$

find the Laurent Series of f(z).

10. (10%)

$$A = \left(\begin{array}{cc} 8 & -6 \\ 4 & -2 \end{array}\right)$$

- (a) $(5\%)Ax = \lambda x$, λ is the eigenvalue of A, and x is the eigenvalue of A, Find λ and x.
- (b) (5%) $A = SDS^{-1}$, S is the matrix with eigenvectors of A, and D is a diagonal matrix which is composed by the eigenvalues of A. Find S, D, and S^{-1} .

11. (15%) Let
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$

- (a) (3%)Find rank(A).
- (b) (4%)Find N(A). (N(A)) is the nullity of A.)
- (c) (4%)Find dim(N(A)) + rank(A)(dim(N(A))) is the dimension of N(A)
- (d) (4%)Ax = b, find x.
- 12. (12%) Let V be a finite-dimensional vector space and $T: V \to V$ be linear. Suppose $rank(T) = rank(T^2)$. Prove that $R(T) \cap N(T) = \{0\}$.

注意:背面有試題

台灣聯合大學系統 107 學年度碩士班招生考試試題

類組: 電機類 科目: 工程數學 A(3003)

共3頁第3頁

※請在答案卷內作答

13. (13%) Given a vector space V over F. Define the dual space of $V^* \times V^*$ as the set of all function (also known as linear functional) from V to F, i.e., $V^* \triangleq \{f | f : V \to F\}$. It is obvious that V^* is itself also a vector space with the addition $+: V^* \times V^* \to V^*$ and scalar multiplication $*: F \times V^* \to V^*$ define as pointwise addition as well as pointwise scalar multiplication. Given any linear transformation $T: V \to W$. The transpose T^t is a linear transformation from W^* to V^* defined by $T^t(f) = fT$ for any $f \in W^*$. For every subset S of V, we define the annihilator S^0 as $S^0 \triangleq \{f \in V^* | f(x) = 0 \ \forall x \in S\}$. Suppose V,W are both finite-dimensional vector spaces and $T: V \to W$ is linear. Prove that $N(T^t) = (R(T))^0$.