類組:電機類 科目:工程數學 D(3006)

共 6 頁 第_1_頁

※請在答案卡內作答

- 本測驗試題為多選題(答案可能有一個或多個),請選出所有正確或最適當的答案,並請用2B鉛筆作答於答案卡。
- 共二十題,每題五分。每題ABCDE每一選項單獨計分,每一選項的個別分數為一分,答 錯倒扣一分。

Notation: In the following questions, underlined letters such as $\underline{a}, \underline{b}$, etc. denote column vectors of proper length; boldface letters such as \mathbf{A}, \mathbf{B} , etc. denote matrices of proper size; \mathbf{A}^{T} means the transpose of matrix \mathbf{A} . \mathbf{I}_n is the $(n \times n)$ identity matrix. $\|\underline{a}\|$ means the Euclidean norm of vector \underline{a} . \mathbb{R} is the usual set of all real numbers; \mathbb{C} is the usual set of all complex numbers. By $\mathbf{A} \in \mathbb{R}^{m \times n}$ we mean \mathbf{A} is an $m \times n$ real-valued matrix. u(x) is unit-step function defined as u(x) = 1 if $x \geq 0$ and u(x) = 0 if x < 0; \star is the convolution operator; $\mathcal{L}: f(x) \mapsto F(s)$ and $\mathcal{L}^{-1}: F(s) \mapsto f(x)$ denote the <u>unilateral</u> Laplace and inverse Laplace transforms for $x \geq 0$, respectively.

- -- \cdot \text{Let } \mathbb{H} = \mathbb{I}_n 2\overline{u} \overline{u}^{\text{\ti}}\text{\tilin{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\te}\text{\texi}\text{\texi}\text{\texi}\text{\text{\texi}\text{\text{\texi}\text{\text{\texi{\texi{\texi{\texi}\text{\text{\texi{\text{\texi{\texi{\texi{\tii}\tiint{\texi{\t
 - (A) The matrix H is both symmetric and orthogonal.
 - (B) Both 1 and -1 are eigenvalues of H.
 - (C) $det(\mathbf{H}) = 1$.
 - (D) Trace(H) = n-2.
 - (E) None of the above.
- Two square matrices A and B are similar, denoted by $A \sim B$, if $B = P^{-1}AP$ for some nonsingular matrix P. Which of the following statements is/are true?
 - (A) Two similar matrices always have the same set of eigenvalues, including multiplicity.
 - (B) Two $n \times n$ matrices having the same set of eigenvalues, including multiplicity, are similar.
 - (C) Any two square matrices with the same trace and determinant are similar.
 - (D) If $A \sim B$, then $p(A) \sim p(B)$ for any polynomial p(x).
 - (E) None of the above.
- Ξ . Let $\mathbf{A} = \underline{x}\underline{y}^{\mathsf{T}}$, where \underline{x} and \underline{y} are two nonzero vectors of \mathbb{R}^n , n > 1. Which of the following statements is/are true?
 - (A) rank(A) = 1 and the range space of A is $Span\{y\}$.
 - (B) nullity(A) = 2 and the null space of A is $Span\{\underline{x}, \underline{y}\}$.
 - (C) Trace(A) = 1 and det(A) = 0
 - (D) A is always diagonalizable.
 - (E) None of the above.

台灣聯合大學系統 106 學年度碩士班招生考試試題

類組:電機類 科目:工程數學 D(3006)

共 6 頁 第 2 頁

※請在答案卡內作答

Let $\mathbf{A} = \underline{x} \underline{y}^{\top} + \underline{y} \underline{x}^{\top}$, where \underline{x} and \underline{y} are two nonzero orthonormal vectors of \mathbb{R}^n and n > 2. Which of the following statements is/are true?

- (A) Both \underline{x} and y are eigenvectors of A
- (B) Trace(A) = 1 and det(A) = 0
- (C) A is not diagonalizable.
- (D) The least square solution of $\mathbf{A}\underline{z} = \underline{b}$, where \underline{b} is a vector in \mathbb{R}^n , is $(\underline{b}^{\top}\underline{x})\underline{x} + (\underline{b}^{\top}\underline{y})\underline{y}$.
- (E) None of the above.

 $\underline{\mathcal{A}}$. Let $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$, and $\{\underline{u}_1, \dots, \underline{u}_n\}$ be an orthonormal basis for \mathbb{R}^n . It is known that $\langle \mathbf{A}, \mathbf{B} \rangle = \operatorname{Trace}(\mathbf{A}^{\top}\mathbf{B})$ is an inner product. We denote $\mathbf{A} \perp \mathbf{B}$ if $\langle \mathbf{A}, \mathbf{B} \rangle = 0$. Which of the following statements is/are true?

- (A) Let $\underline{x}, \underline{y}, \underline{w}, \underline{z}$ be four nonzero vectors of \mathbb{R}^n . Then $\underline{w} \underline{z}^{\mathsf{T}} \perp \underline{x} \underline{y}^{\mathsf{T}}$ if and only if $\underline{w} \perp \underline{x}$ and $\underline{z} \perp y$.
- (B) The set $\mathcal{B}_1 := \left\{ \underline{u}_i \, \underline{u}_j^\top : i, j = 1, \dots, n \right\}$ is an orthonormal basis for $\mathbb{R}^{n \times n}$.
- (C) The set

$$\mathcal{B}_2 = \left\{ \underline{u}_i \, \underline{u}_i^\top + \frac{\underline{u}_i \, \underline{u}_j^\top + \underline{u}_j \, \underline{u}_i^\top}{\sqrt{2}} \; : \; 1 \le i < j \le n \right\}$$

is an orthonormal basis for the real vector space $\mathcal{S}_1 = \left\{ \mathbf{A} \in \mathbb{R}^{n \times n} : \mathbf{A} = \mathbf{A}^\top \right\}$.

(D) The set

$$\mathcal{B}_3 = \left\{ \frac{\underline{u}_i \, \underline{u}_j^{\mathsf{T}} - \underline{u}_j \, \underline{u}_i^{\mathsf{T}}}{\sqrt{2}} : 1 \le i < j \le n \right\}$$

is an orthonormal basis for the real vector space $\mathcal{S}_2 = \left\{ \mathbf{A} \in \mathbb{R}^{n \times n} : \mathbf{A} = -\mathbf{A}^\top \right\}$.

- (E) None of the above.
- \Rightarrow The system of linear equations $\mathbf{A}\underline{x} = \underline{b}$ has

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, \quad \underline{b} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

Which of the following statements is/are true?

- (A) $rank(\mathbf{A}) + nullity(\mathbf{A}) = 3$
- (B) $\mathbf{A}^{\top}\mathbf{A}$ is a symmetric 2×2 matrix
- (C) The nullspace of A has two linearly independent vectors.
- (D) $\mathbf{A}^{\top}\mathbf{A}$ is an invertible matrix.
- (E) None of the above.

台灣聯合大學系統 106 學年度碩士班招生考試試題

類組:電機類 科目:工程數學 D(3006)

共 6 頁 第 3 頁

※請在答案卡內作答

七、 Continued from Problem 六, which of the following statements is/are true?

(A) The matrix A has the same row space as the following matrix

$$\left[\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 1 & 2 \end{array}\right]$$

- (B) $\det(\mathbf{A}\mathbf{A}^{\top}) = 0$
- (C) Let \underline{p} be the projected vector of \underline{b} onto the column space of \mathbf{A} . The Euclidean distance between \underline{b} and p is zero.
- (D) There exists a (3×2) matrix C such that rank(CA) = 3.
- (E) None of the above.

 \wedge Continued from Problem $\dot{\approx}$, let B_1 be a (2×2) matrix and consider the system $B_1 A_{\underline{x}} = B_1 \underline{b}$. It is known that

$$\mathbf{B}_1 \underline{b} = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$$
 and $\underline{x} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

Which of the following vectors can be column vectors for B_1 ?

- (A) $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$
- (B) $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$
- (C) $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$
- (D) $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$
- (E) None of the above.

九、 Given the matrices

$$\mathbf{M_1} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad \mathbf{M_2} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \mathbf{M_3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

which of the following statements is/are true?

- (A) M_1 , M_2 and M_3 are linearly independent over $\mathbb R$ in $\mathbb R^{2 \times 2}$.
- (B) The span of $\{M_1,M_2,M_3\}$ is the set of all (2 \times 2) real matrices
- (C) The set of all Hermitian (2×2) complex-valued matrices is a subspace of the span of $\{M_1, M_2, M_3\}$ over \mathbb{C} .
- (D) Any linear combination of $\mathbb{M}_1,\,\mathbb{M}_2$ and \mathbb{M}_3 can be diagonalized over $\mathbb{C}.$
- (E) None of the above.

類組:電機類 科目:工程數學 D(3006)

共 6 頁 第 4 頁

※請在答案卡內作答

+ Continued from Problem \hbar . Let $B=3M_1+4M_2+M_3$ and $C=B^4-4B^3-9B^2+27B+11I_2$. Which of the following is/are true?

(A)
$$\mathbf{C} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

(B)
$$C = \begin{bmatrix} 3 & 0 \\ 0 & 4 \end{bmatrix}$$

(C)
$$\mathbf{C} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

(D)
$$C = \begin{bmatrix} 3 & 1 \\ 1 & 4 \end{bmatrix}$$

- (E) None of the above.
- +-- Solve the first-order differential equation $x^2y'(x)+xy(x)\ln(y(x))=xy(x)$. Which of the following statements is/are true?
 - (A) This is a homogeneous and linear differential equation
 - (B) y(x) = 0 is one particular solution
 - (C) $y(x) = \exp(1)$ is another particular solution
 - (D) x = 0 is also a solution
 - (E) None of the above.
- $+ = \cdot$ Continued from Problem + -. Given the initial condition y(a) = b, which of the following statements is/are true?
 - (A) No solution if a = 0.
 - (B) A unique solution if b = a > 0.
 - (C) More than one solution if $b = \exp(1)$.
 - (D) A unique solution if $a \neq 0$ and b > 0.
 - (E) None of the above.
- The second-order linear differential equation $(1-x^2)y''(x) + 2xy'(x) 2y(x) = f(x)$, for -1 < x < 1. To find the homogeneous solution, i.e. f(x) = 0, given one solution $y_1(x) = x$, the other linearly independent solution $y_2(x)$ can be derived by setting $y_2(x) = v(x)y_1(x)$. Assuming v(x) satisfies v(1) = 2 and $v(2) = \frac{5}{2}$, which of the following statements about v(x) is/are true?

(A)
$$x(1-x^2)v''(x) + 2v'(x) = 0$$

(B)
$$x(x^2 - 1)v''(x) + 2v'(x) = 0$$

(C)
$$v'(x) = \frac{x^2-1}{x^2}$$

(D)
$$v'(x) = \frac{x^2}{x^2-1}$$

(E) None of the above.

科目:工程數學 D(3006)

共6頁第5頁

等展

- <u> ※請在答案卡內作答</u> 十四、 Continued from Problem 十三, find a particular solution for $f(x) = 1 x^2$ by the method of variation of parameters, i.e., $y_p(x) = u_1(x)y_1(x) + u_2(x)y_2(x)$, where $y_1(x)$ and $y_2(x)$ are obtained from Problem $+ \equiv$. Which of the following statements regarding $u_1(x)$ and $u_2(x)$ are true?
 - (A) $u_1(x) = \ln(1+x) \ln(1-x) x$
 - (B) $u_2(x) = \ln(1+x) + \ln(1-x)$
 - (C) $u_1(x) = x + \frac{x^3}{2}$
 - (D) $u_2(x) = -\frac{x^2}{2}$
 - (E) None of the above.
- +£. Solve the initial value problem of $(2x-x^2)y''(x)-5(x-1)y'(x)-3y(x)=0$ with y(1)=0and y'(1) = 1 by power series of the form $y(x) = \sum_{n=0}^{\infty} c_n(x-1)^n$. Which of the following statements is/are true?
 - (A) x = 0 is a regular singular point.
 - (B) x = 1 is a regular singular point.
 - (C) The guaranteed radius of convergence is 2.
 - (D) The series converges if 0 < x < 2.
 - (E) None of the above.
- Continued from Problem + £, which of the following statements regarding the recurrence relation as well as values of coefficients c_n is/are true?
 - (A) $c_{n+2} = \frac{n+2}{n+3}c_n$
 - (B) $c_8 = 0$
 - (C) $c_5 = \frac{8}{5}$
 - (D) $c_9 = \frac{63}{128}$
 - (E) None of the above.
- + + + Let $\underline{y}(x) = [y_1(x) \ y_2(x)]^{\top}$ and consider the following system of first-order differential equations

$$\underline{y}'(x) = \begin{bmatrix} 6 & -7 \\ 1 & -2 \end{bmatrix} \underline{y}(x) + \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

Assuming $\underline{y}(0) = \begin{bmatrix} 1 & -1 \end{bmatrix}^\mathsf{T}$, let $\underline{Y}(s) = [Y_1(s) \ Y_2(s)]^\mathsf{T} = \mathcal{L}\{\underline{y}(x)\}$. Which of the following statements is/are true?

- (A) $Y_1(1) = \frac{5}{8}$.
- (B) $Y_1(6) = \frac{85}{42}$.
- (C) $Y_1(7) Y_2(7) = \frac{11}{14}$.
- (D) $\frac{Y_2(8)}{Y_1(8)} = 0$.
- (E) None of the above.

類組:電機類 科目:工程數學 D(3006)

共 6 頁 第 6 頁

※請在答案卡內作答

- $+ \lambda$. Continued from Problem $+ \lambda$, which of the following statements regarding the solution y(x) is/are true?
 - (A) $y_2'(0) = 6$.
 - (B) $y_1''(0) = 8$.
 - (C) $y_2''(0) = 3$.
 - (D) $\lim_{x\to-\infty} (y_1(x) y_2(x)) = \frac{1}{4}$.
 - (E) None of the above.
- $+ \lambda$. Let y(x) be a real-valued function satisfying the following second-order differential equation

$$y''(x) + y(x) = f(x)$$

Assume y(0) = y'(0) = 0 and $f(x) = \sum_{n\geq 0} u(x - n\pi) \sin(x - n\pi)$. Which of the following statements is/are true?

(A)
$$y(x) = \left(\mathcal{L}^{-1}\left\{\frac{1}{(s^2+1)^2}\right)\right\} \star \left(\sum_{n\geq 0} \delta(x-n\pi)\right).$$

(B)
$$\mathcal{L}^{-1}\left\{\frac{s^2}{(s^2+1)^2}\right\} = \frac{1}{2}\left[\sin(x) + x\cos(x)\right]u(x).$$

(C) Let
$$F(s) = \mathcal{L}\{f(x)\}$$
; then $F(1) = \frac{1}{2(1-e^{-\pi})}$.

- (D) y(x) = 0 for all $x < -\pi$.
- (E) None of the above.
- 二十、 Continued from Problem 十九, which of the following statements is/are true?
 - (A) y(x) is a periodic function with period π .
 - (B) y(x) is bounded for all x > 0.
 - (C) $y(\frac{\pi}{2}) = \frac{1}{2}$.
 - (D) $y'(\frac{\pi}{2}) = \frac{\pi}{4}$.
 - (E) None of the above.

注:背面有試題