台灣聯合大學系統 106 學年度碩士班招生考試試題

類組 電機類 科目 工程數學 A(3003)

共3頁第一頁

※請在答案卷內作答

Note: Detailed derivations are required to obtain a full score for Problem 2 to Problem 4.

- 1. (15%) Among the 10 statements below, only 5 are true and the other 5 are false. Find out which 5 are true. (You are not obligated to give explanations, but will get zero point if listing more than 5 of them).
 - (a) Let V be a vector space and $S \subseteq V$ be a subset. Then, $\operatorname{span}(S)$ is the intersection of all subspaces of V that contain S.
 - (b) Let $T: V \to W$ be a linear transformation. Let $S = \{v_1, v_2, ..., v_n\}$ be a subset of V. If S is linearly dependent, its image T(S) is also linearly dependent.
 - (c) The basis of any vector space uniquely exists.
 - (d) Let $T: V \to W$ be a linear transformation. If T is invertible, then $\dim(V) = \dim(W)$.
 - (e) Let $A \in M_{m \times n}(\mathbb{R})$ be an arbitrary matrix. If m < n, then $rank(A) > rank(A^t)$.
 - (f) Assume that $A \in M_{m \times n}(\mathbb{R})$ and $b \in M_{m \times 1}(\mathbb{R})$. Let x_1 and x_2 be two column vectors in \mathbb{R}^n . If $x_1 \neq x_2$ and $Ax_1 = b = Ax_2$, then the system of linear equations Ax = b has infinitely many solutions.
 - (g) Let A and B be square matrices of the same size. If AB = O, then $R(L_B) \supseteq N(L_A)$. (Remarks: L_A and L_B denote the linear transformation of matrix multiplication from the left.)
 - (h) Let A and B be square matrices of the same size. If AB = A, then B = I.
 - (i) Let A be a square matrix and $r \in \mathbb{R}$. Then, $\det(rA) = r \det(A)$.
 - (j) Assume that $A \in M_{3\times 3}(\mathbb{C})$ and $A^tA = -I$. Then, the entries in A cannot all be real numbers.
- 2. (10%) Define a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ by T((1,0,0)) = (0,1,0), T((0,1,0)) = (0,0,1), and T((0,0,1)) = (1,0,0).
 - (a) (5%) Find a vector $u = (u_x, u_y, u_z)$ such that T(u) = u and $\sqrt{u_x^2 + u_y^2 + u_z^2} = 1$.
 - (b) (5%) Is $T : \mathbb{R}^3 \to \mathbb{R}^3$ one-to-one and onto? Why or why not?
- 3. (15%) Let W_1, \ldots, W_k be subspaces of a vector space V. The direct sum V of W_1, \ldots, W_k is defined if the following two conditions hold.

$$V = \sum_{i=1}^{n} W_i$$
 and $W_j \cap \sum_{i \neq j} W_i = \{0\} \ \forall j \ (1 \leq j \leq k)$

If the two conditions hold, then V is denoted by $V = W_1 \oplus ... \oplus W_k$. Prove or disprove (by providing a counterexample) of the following statements.

台灣聯合大學系統 106 學年度碩士班招生考試試題

類組:電機類 科目:工程數學 A(3003)

共3頁第2頁

※請在答案卷內作答

- (a) (7%) If $V = W_1 \oplus \ldots \oplus W_k$. Then, for any distinct i and j, W_i and W_j intersect at exactly the zero vector.
- (b) (8%) If $V = \sum_{i=1}^{n} W_i$, and W_i and W_j intersect at exactly the zero vector for any distinct $i, j \ (1 \le i, j \le k)$. Then V is the direct sum of W_1, \ldots, W_k
- 4. (10%) Let V be a finite-dimensional complex inner product space and T: V → V be a linear operator. T is normal if and only if TT* = T*T, where T* is the adjoint of T. Moreover, T is nilpotent if there exists n ∈ N such that Tⁿ is the zero operator. Prove the following statement. If T is both normal and nilpotent, then T is the zero operator itself.

Solve
$$y'' + 5y' + 4y = e^{-x}$$

6. (5%)

Solve the following differential equation with the initial conditions by using Laplace transform.

$$y''+y=\delta(t-\pi)$$

$$y(0) = 0$$

$$y'(0) = 0$$

7. (5%)
$$y'' + (1 + \lambda)y = 0$$
; $y(0) = y(\pi) = 0$
Find the eigenvalues and eigenfunctions.

8. (5%)

$$f(t) = \begin{cases} e^{-\alpha t}, & t \ge 0 \\ 0, & t < 0 \end{cases} \quad (\triangle > 0)$$

Find the Fourier Transform of f(t).

$$f(t) = \begin{cases} -1, & -\pi < t < 0 \\ 1, & 0 < t < \pi \end{cases}$$

$$f(t + n2\pi) = f(t)$$

Find the Fourier Series of f(t).

類組:電機類 科目:工程數學 A(3003)

共3頁第3頁

X請在答案卷內作答

10. (5%)

Find u and v such that f(z) = u(x, y) + iv(x, y); determine where f is differentiable and where f is not.

$$f(z) = \left| z^2 \right|$$

11. (5%)

Find the principle value of $(i)^{1-2i}$

12. (5%)

Find the residue of $f(z) = \frac{\sin z}{z^4(z^2 + i)}$ at z = 0.

13. (5%)

Consider the complex series $f(z) = \sum_{n=0}^{\infty} \frac{z^n}{4^{n+1}} + \sum_{n=1}^{\infty} \frac{1}{z^n}$.

Find the region of convergence.

14. (5%)

$$\oint e^{3/z} dz$$

where C: |z-i|=2, clockwise

