類組:電機類 科目:電路學(3009)

共 3 頁第 1 頁

計算題(計算題應詳列計算過程,無計算過程者不予計分)

- 1. (20%) A balanced three-phase Y-connected generator with positive sequence has an impedance of 0.2+ j0.5 ohm per phase and an internal voltage of 120 volt per phase. The generator feeds a balanced three-phase Y-connected load having an impedance of 39+j28 ohm per phase. The impedance of the line connecting the generator to the load is 0.8+j1.5 ohm per phase. The a-phase internal voltage of the generator is specified as the reference phasor.
 - a. (4%) Construct the a-phase equivalent circuit of the system.
 - b. (3%) Calculate the line voltage phasor V_{BC} at the terminals of the load.
 - c. (4%) Find the instantaneous power per phase and the average power per phase delivered to the Y-connected load.
 - d. (3%) Calculate the total number of magnetizing vars absorbed by the load.
 - e. (3%) Calculate the total complex power delivered by the source.
 - f. (3%) Calculate the power factor at the sending end of the line.
- 2. (15%) Determine the Z parameters for the circuit shown below when m=2/3.

3. (15%) In the circuit below, the input and output voltages are vi(t) and vo(t), respectively. Design the circuit so that it has the step response

$$v_o(t) = \left[4 - e^{-2t} \left(4\cos(4t) - 2\sin(4t)\right)\right] u(t)$$

注意:背面有試題

類組: 電機類 科目: 電路學(3009)

共_3_頁第_2_頁

4. (15%) Given the circuit below, design a second-order band-pass filter with a center frequency gain of -5, $\omega_0 = 10 \text{ k}$ rad/s, and a BW = 2 k rad/s. Let $C_1 = C_2 = C$ and $R_1 = 1 \text{k}\Omega$, find (a) C; (b) R_2 ; (c) R_3 ; and (d) Q of this filter, assuming that the op-amp is ideal.

5. (15%) Use Thévenin's theorem to find V_{o} in the following figure.

6. (10%) Given a boost converter operated in discontinuous conduction mode, derive its input-to-output voltage transfer ratio (V_o/V_i) , in terms of duty ratios d_1 and d_2 where d_1 is the M_p on-time and d_2 is the D_p on-time, and with volt-second balance principle.

類組: 電機類 科目: 電路學(3009)

共_3_頁第_3_頁

- 7. (10%) A forward converter is shown as follows and operated in discontinuous conduction mode. Determine:
 - (A) (7%) the voltage stresses imposed on diodes D_M , D_{P2} and D_{P3} .
 - (B) (3%) the voltage stress imposed on switch M_P .

