
類組:<u>電機類</u>科目:<u>固態電子元件(300G)</u>

共3頁第1頁

※請在答案卷內作答

- 1. Use $n_i=1\times10^{10}$ cm⁻³ and 2.3kT=60 meV for this problem
 - (a) The electron concentration n in a piece of silicon at 300 k is 10^5 cm⁻³. What is the hole concentration p? (5%)
 - (b) A silicon sample is doped with impurity concentration N_D =9×10¹⁷ cm⁻³ and N_A =8×10¹⁷ cm⁻³. Assume that all the impurities are ionized. Find the electron concentration n and hole concentration p. (5%)
 - (c) For a silicon sample at T = 300 K, the Fermi level is located at 0.21 eV above the intrinsic Fermi level. Find the electron concentration p and hole concentration p. (5%)
- 2. A part of the energy band diagram of a silicon bar under equilibrium conditions is shown below.
 - (a) Find the electric field in this region. (5%)
 - (b) What is the electron concentration n(x) for this region? (5%)
 - (c) What is the drift current density J(x) assume mobility $\mu = 1000 \text{ cm}^2/\text{Vs.}$? (5%)

注意:背面有試題

台灣聯合大學系統 111 學年度碩士班招生考試試題

類組:電機類 科目:固態電子元件(300G)

共3頁第2頁

※請在答案卷內作答

3. Please qualitatively plot the steady-state depletion region widths and the minority carrier concentration profiles in an abrupt p⁺n junction under (a) zero bias and (b) reverse bias. Assume that the p-type doping concentration is much larger than that of n-type. (10%)

4.

- (a) We deposit a metal with a work function of 4.6 eV on an n-type Si to form an M-S junction. Suppose that the Si has an electron affinity of 4 eV and a doping concentration of 10¹⁷ cm⁻³. Please draw the equilibrium band diagram of this M-S junction at room temperature. Please properly indicate important parameters (such as energy, junction position, depletion width, ...etc.) on the diagram. (5%)
- (b) As a comparison, please draw the equilibrium band diagram of an abrupt Si p⁺n junction at room temperature. Suppose that the n-type doping concentration is also 10¹⁷ cm⁻³ and the p-type doping concentration is 10²⁰ cm⁻³. Please properly indicate important parameters (such as energy difference, junction position, depletion width, ...etc.) on the diagram. (5%)
- (c) On the same I-V diagram, please qualitatively draw the I-V characteristics of the two junctions described in (a) and (b). (5%)
- 5. Derive the transconductance formula, $\frac{\partial i_c}{\partial v_{BE}}$, of an NPN BJT biased in the forward-active region.

Please state clearly the parameters used in your expressions. (10%)

注意:背面有試題

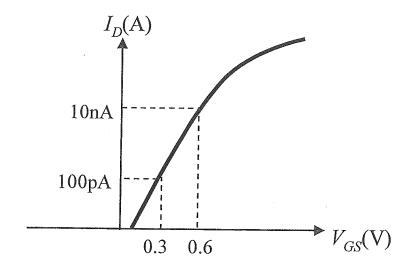
台灣聯合大學系統 111 學年度碩士班招生考試試題

類組:<u>電機類</u> 科目:<u>固態電子元件(300G)</u>

共3頁第3頁

※請在答案卷內作答

6. MOS capacitor (25%)


Given a MOS-C with area of A, the thickness of SiO₂ is t_{ox} , the doping of the n-Si substrate is N_D and its gate consists of p+ doped poly-silicon, while its flat-band voltage is V_{FB} .

- (a) Please plot the band diagrams of the MOS-C at depletion, flat-band and accumulation. Include explicitly the Fermi levels, E_c , E_v , E_i in the plots. (9%)
- (b) Assumed ideal SiO₂ and SiO₂/Si interface, please derive the thresold voltage V_{th} as a function of (V_{FB} , t_{ox} , N_D). Please explain the symbols used in the derivation and results. (6%)
- (c) Please plot the high-frequency and low-frequency C-V curves of this MOS-C. Explain how t_{ox} , V_{th} and N_D can be found based these C-V curves. (10%)

7. MOSFET (10%)

Transfer I_D - V_G characteristic of a MOSFET at 360 K is shown in **figure below**.

- (a) What is the subthreshold swing? (4%)
- (b) Decrease the temperature to 240 K, please plot is I_D-V_G characteristic against the curve below (compare with the one measured at 360 K), what is the subthreshold swing at 240 K? (6%)

