台灣聯合大學系統110學年度碩士班招生考試試題

類組:電機類 科目:電磁學(3007)

共_6 頁第 1 頁

單選題,共二十題,每題5分。

- 1. (5%) A cylindrical capacitor consists of an inner conductor of radius a, and an outer conductor whose inner radius is b. The space between the conductors is filled with a dielectric of permittivity ϵ . The length of the capacitor is L. The capacitance of this this capacitor is
 - (A) $C=2\pi \epsilon L/\ln(b/a)$
- (B) $C=2\pi \epsilon L/\ln(a/b)$
- (C) C= $2\pi \epsilon L/ln(ab)$
- (D) none of the mentioned

2. (5%) Four capacitance C_1 =1(μ F), C_2 =2(μ F), C_3 =3(μ F), C_4 =4(μ F), are connected as following figure. The total equivalent capacitance is (A) 5.5 (μ F) (B) 10 (μ F) (C) 1.9 (μ F) (D) none of the mentioned

3. (5%) The Poisson's equation determines the relation of electric potential V, electric field \vec{E} , and charge density ρ . The correct Poisson's equation in simple medium is

(A)
$$\nabla^2 V = \nabla \cdot \vec{E} = \frac{\rho}{\varepsilon}$$
 (B) $-\nabla^2 V = \nabla \cdot \vec{E} = \frac{\rho}{\varepsilon}$

(C)
$$-\nabla^2 V = \nabla \cdot \vec{E} = \rho$$
 (D) $-\nabla^2 V = \nabla \cdot \vec{E} = Q$

台灣聯合大學系統110學年度碩士班招生考試試題

類組:電機類 科目:電磁學(3007)

共_6_頁第_2_頁

4. (5%) The parallel-plate capacitor is shown in following figure. The electric field \vec{E}_2

(A)
$$\frac{V}{d_2 + d_1 \frac{\varepsilon_2}{\varepsilon_1}}$$
 (B) $\frac{V}{d_2 + d_1 \frac{\varepsilon_2}{\varepsilon_1}}$ (C) $\frac{V}{d_1 + d_2 \frac{\varepsilon_2}{\varepsilon_1}}$ (D) $\frac{V}{d_1 + d_2}$

- 5. (5%) Two conductors in a simple lossy dielectric medium with $\epsilon \& \sigma$ is shown in following figure. The RC product is
 - (A) $1/\epsilon\sigma$ (B) σ/ϵ (C) $\epsilon\sigma$ (D) ϵ/σ

- 6. (5%) The fundamental postulates for magnetostatics state/infer:
 - (A) $\nabla \cdot \vec{H} = 0$, (B) $\nabla \cdot \vec{J} = 0$, (C) $\nabla \times \vec{B} = \vec{J}$, (D) None mentioned.
- 7. (5%) Ampère's Circuital Law is a powerful tool to determine the magnetic flux density, but why do we still need the Biot-Savart Law?
 - (A)Current may not form a closed loop in a problem,
 - (B) Current loop may have irregular geometry,
 - (C) Point of interest may not show symmetry,
 - (D) All above, (E) None mentioned.

注意:背面有試題

台灣聯合大學系統 110 學年度碩士班招生考試試題

類組:電機類 科目:電磁學(3007)

共_6_頁第_3_頁

8. (5%) The derivation of the Biot-Savart Law requires Coulomb gauge. Coulomb gauge states:

(A)
$$\vec{B} = \nabla \times \vec{A}$$
, (B) $\nabla \times \nabla \times \vec{A} = \mu_0 \vec{J}$, (C) $\nabla \cdot \vec{A} = 0$, (D) None mentioned.

- 9. (5%) If your eyes could see the fields of an electric dipole and a magnetic dipole, you would sense the field profiles are:
 - (A)Different near the dipoles, (B) Different far from the dipoles,
 - (C)Completely the same, (D) Completely different.
- 10. (5%) If we define β as the phase constant (also called the propagation constant), the group velocity is

(A)
$$\frac{\omega}{\beta}$$
, (B) $\frac{d\beta}{d\omega}$,

- (C) $\frac{d\omega}{d\beta}$, (D) None of the above.
- 11. (5%) We define $\vec{P} = \vec{E} \times \vec{H}$, $w_e = (1/2) \epsilon |\vec{E}|^2$, $w_m = (1/2) \mu |\vec{H}|^2$, $p_\sigma = \sigma |\vec{E}|^2$. Which one of the following expressions is the correct Poynting's theorem?

(A)
$$-\oint_{S} \vec{P} \cdot d\vec{s} = \frac{\partial}{\partial t} \int_{V} \left(w_e + w_m \right) dv + \int_{V} p_\sigma dv,$$

(B)
$$\oint_{S} \vec{P} \cdot d\vec{s} = \frac{\partial}{\partial t} \int_{V} (w_e + w_m) dv + \int_{V} p_\sigma dv,$$

(C)
$$-\oint_{S} \vec{P} \cdot d\vec{s} = \frac{\partial}{\partial t} \int_{V} \left[w_e + w_m \right] dv - \int_{V} p_\sigma dv,$$

(D) None of the above.

台灣聯合大學系統 110 學年度碩士班招生考試試題

類組:電機類 科目:電磁學(3007)

共 6 頁 第 4 頁

12. (5%) The **E**-field of a uniform plane wave propagating in a dielectric medium is given by

$$\vec{E}(z,t) = \vec{a}_x \cos\left(2\pi 10^8 t - \frac{4\pi}{3} z + \frac{\pi}{6}\right) + 2\vec{a}_y \sin\left(2\pi 10^8 t - \frac{4\pi}{3} z + \frac{\pi}{6}\right) (V/m).$$
 Assume this

dielectric medium is lossless and non-magnetic (σ = 0, μ_r = 1). Which of the following statements is correct?

- (A) The dielectric constant ε_r of this medium is 4.
- (B) This plane wave is linearly polarized.
- (C) The wavelength in the dielectric medium is 6 m.
- (D) None of the above.
- 13. (5%) The instantaneous expression for the electric field of a uniform plane wave in vacuum is given by $\vec{E}(z,t)=E_0\vec{a}_x\cos(\omega t-k_0z)$. We denote the intrinsic impedance of the free space by η_0 . The magnetic field is
 - (A) $(E_0 \cdot \eta_0) \vec{a}_y \cos(\omega t k_0 z)$,
 - (B) $(E_0/\eta_0)\vec{a}_y\cos(\omega t k_0z)$,
 - (C) $\left(E_0/\eta_0^2\right)\vec{a}_y\cos\left(\omega t k_0z\right)$,
 - (D) None of the above.
- 14. (5%) Assume there is a short end transmission line with infinite length as the figure shown below. The distributed parameters of the transmission line are $R=0.057(\Omega/m)$, $L=0.25(\mu H/m)$, $G=22.8(\mu S/m)$,C=0.1 (nF/m). Please evaluate the input impedance $Z_{\rm in}$ at 1 GHz.
 - (A) $0.057~\Omega$ (B) $2500~\Omega$ (C) $50~\Omega$ (D) None of the above.

台灣聯合大學系統 110 學年度碩士班招生考試試題

類組:電機類 科目:電磁學(3007)

共 6 頁第5 頁

15. (5%) A matching network composed of an ideal shunt capacitor C_m transfers a load impedance of Z_x to input impedance of 50Ω , as the figure shown below. Please indicate which one is the possible changing procedure of reflection coefficient on a Smith Chart (Z-Chart) from load to input port while matching?

(D)None of the above.

- 16. (5%) Given a 75- Ω characteristic impedance transmission line with length larger than the wavelength related to the sinusoidal input signal. Please evaluate the magnitude of the reflection coefficient $|\Gamma|$ on this transmission line terminated by an 50Ω load impedance.
 - (A) 0.385, (B)2.25, (C)0.2, (D)None of the above.
- 17. (5%) A rectangular pulse $V_g(t)$ of an amplitude 15 (V) and a duration $1(\mu s)$ is applied through a series resistance R_g of $25(\Omega)$ to the input terminals of a $50(\Omega)$ lossless transmission line. Given the speed of EM wave in this line is $1.5 \times 10^8 \text{m/s}$ s. The line is 400 (m) long and short-circuited at the far end, as the figure shown below. Determine the voltage at the midpoint of the line at the time of 2 μs . (A) 10V, (B)-10V, (C)0V, (D)None of the above.

注意:背面有試題

台灣聯合大學系統110學年度碩士班招生考試試題

類組: 電機類 科目: 電磁學(3007)

共_6 頁第6 頁

- 18. (5%) In an air-filled metallic rectangular waveguide, which of the following will be the most likely answer for the fundamental mode? (A) TE_{11} (B) TM_{10} (C) TE_{10} (D) TEM
- 19. (5%) The fundamental mode propagating in the Teflon-filled parallel plates will be (A) TE_2 (B) TE_1 (C) TM_1 (D) TEM
- 20. (5%) The cutoff frequency for the TM_3 mode in the air-filled parallel plates (with separation of 1 cm) will be somewhere in the frequency range of (A) DC~20 GHz (B) 20~40 GHz (C) 40~60 GHz (D) 60~80 GHz