台灣聯合大學系統 110 學年度碩士班招生考試試題

類組:電機類 科目:近代物理(300F)

第1頁共6頁

※選擇題請在答案卡內作答,非選擇題請在答案卷內作答

(一)單選題:共8題,每題5分,答錯倒扣5/4分,倒扣至該大題(即單選題)0分為止

- 1. For a metal with specified work function $\Phi_0 = 3.1$ eV subject to exposure of light with various wavelengths and intensity of 8.01 W/ m^2 directed at the metal sphere with a radius of 5 cm
- (A) The maximum wavelength required to stimulate the photoelectron emission is $\lambda_{max} = 350 \text{ nm}$, which is the kind of ultra-violate (UV)
- (B) Under the exposure of light with $\lambda = 248$ nm, the maximum energy of the photoelectrons emitted from the metal is 1.5 eV
- (C) Under the exposure of light with $\lambda = 155$ nm, the maximum energy of the photoelectrons emitted from the metal is 4.5 eV
- (D) Under the condition that the exposure of light $\lambda = 248$ nm and 0.25% of the incident photons create photoelectrons, the number of emitted photoelectrons is 7.854×10^{14}
- (E) The increase of exposure light intensity can increase the photoelectrons numbers and energy
- 2. Which of the following statements is **wrong**, in regard to the physics of a 1D oscillator in the quadratic potential energy $V(x) = 1/2 k (x-x_{min})^2$? Let n denote the state quantum number of oscillation, with n = 0 for the ground state and n = 1, 2, ... for excited states.
- (A) The classical ground state energy is given by $E_0 = 0$.
- (B) Quantum energy levels {E_n's} are equally spaced.
- (C) Oscillation frequencies are identical for classical and quantum oscillators.
- (D) For large n, the quantum description approaches the classical one.
- (E) The ground state wave function $\Phi_0 = 0$ for $|x| > x_t$. (Note: x_t is the classical turning point where the kinetic energy $E_0 V(x_t)$ vanishes.)
- 3. Assuming that the conduction electrons in a cube of a metal on edge 1 cm behave as a free quantized gas, what is the number of states which are available in the energy interval 4.00-4.01 eV, per unit volume?
- (A) 1.356×10^{18}
- (B) 1.356×10^{20}
- (C) 1.356×10^{22}
- (D) 8.478×10^{25}
- (E) 8.478×10^{28}

注意:背面有試題

※選擇題請在答案卡內作答,非選擇題請在答案卷內作答

- 4. What is the depletion-layer width for a p-n junction with zero bias in germanium, given that the impurity concentrations are $N_A = 1 \times 10^{23} \ m^{-3}$ and $N_D = 2 \times 10^{22} \ m^{-3}$, respectively, at $T = 300 \ \text{K}$, relative permittivity $\varepsilon_r = 16$ and contact potential difference $V_0 = 0.8 \ \text{V}$?
- (A) $0.0725 \mu m$
- (B) $0.145 \mu m$
- (C) $0.29 \mu m$
- (D) $0.58 \mu m$
- (E) $1.16 \mu m$
- 5. For a muon with $m_{\mu} = 200$ m_e captured by a proton to form a muonic atom, please calculate the orbital radius, wavelength, speed, and energies at ground state n = 1: r_1 , λ_1 , ν_1 , E_1 , and photon wavelength λ_{α} for transition from E_2 to E_1 (α -line)
- (A) $r_1 = 3.65 \times 10^{-13} m = 0.365 pm$
- (B) $\lambda_1 = 2.056 \times 10^{-12} m = 2.056 pm$
- (C) $v_1 = 2.1872 \times 10^6 \text{ m/s}$
- (D) $E_1 = -2505 \text{ eV}$
- (E) $\lambda_{\alpha} = 6.74 \times 10^{-9} \ m = 6.74 \ nm$
- 6. Consider a particle moving in a 2D square quantum well, with well width = L and well depth = ∞ . Take the potential well bottom = 0. Which of the following statements is **correct**, in regard to the quantum state?
- (A) The ground state energy is four times as large as that in a 1D quantum well of identical width and depth.
- (B) The ground state energy is 1/4 of the first excited state energy.
- (C) The ground state wave function is given by the sum $F_0(x) + F_0(y)$, ((x,y) = particle position), where F_0 is the ground state wave function in a 1D quantum well of identical width and depth.
- (D) The ground state wave function vanishes at the well center.
- (E) The ground state wave function is even with respect to the inversion operation $(x,y) \rightarrow (-x,-y)$.

注意:背面有試題

※選擇題請在答案卡內作答,非選擇題請在答案卷內作答

- 7. Electrons with energy of 2 eV are separately incident on 10 eV barriers with 0.5 nm and 1 nm wide. What are their respective transmission probabilities (T_{in 0.5 nm barrier width}, T_{in 1 nm barrier width})?
- (A) $(1.1\times10^{-7}, 2.4\times10^{-7})$
- (B) $(1.1\times10^{-7}, 1.3\times10^{-14})$
- (C) $(1.3\times10^{-14}, 5.1\times10^{-14})$
- (D) $(2.4 \times 10^{-7}, 1.3 \times 10^{-14})$
- (E) $(2.4\times10^{-7}, 5.1\times10^{-14})$
- 8. In terms of a particle trapped in a box with the length of L, which of following statements is wrong?
- (A) The normalized wave functions of the particle are $\psi_n = \sqrt{\frac{2}{L}} \sin \frac{n\pi x}{L}$
- (B) At ground state, the probability of the particle which is found between 0.45 L and 0.55 L is about 10%.
- (C) At first excited state, the probability of the particle which is found between 0.45 L and 0.55 L is about 0.65%.
- (D) At first excited state, the probability of the particle which is found at x = 0.5 L is zero.
- (E) At a particular place in the box, the probability of the particle may be different for different quantum numbers.

(二)複選題:共8題,每題5分,答錯倒扣1分,倒扣至該大題(即複選題)0分為止

- 9. Which of the following statements are **correct** concerning the quantum energy eigenstate of a free particle? Let E = energy, p = momentum, and k = wave vector of the state.
- (A) E's of all eigenstates form a continuous spectrum.
- (B) $2E_c/|\mathbf{p}_c|$ gives the speed of a moving wave packet formed by mixing the eigenstates with (E, \mathbf{p}) around (E_c, \mathbf{p}_c) .
- (C) A particle with \mathbf{k} will behave approximately classically, when hitting a wall with an opening of the size $L \gg 1/|\mathbf{k}|$.
- (D) A mixed state formed of two eigenstates such as $\exp(i\mathbf{k}_1\cdot\mathbf{r})\exp(-iE_1t) + \exp(i\mathbf{k}_2\cdot\mathbf{r})\exp(-iE_2t)$, where \mathbf{k}_1 and \mathbf{k}_2 differ but $|\mathbf{k}_1| = |\mathbf{k}_2|$, is not an eigenstate of momentum but is that of energy.
- (E) If one measures the momentum of mixed state $\exp(i\mathbf{k}\cdot\mathbf{r}) + \exp(-i\mathbf{k}\cdot\mathbf{r})$ for many times by performing the measurement on a very large number of identical copies of the state, the distribution of measured values will have a width of the order of $|\mathbf{k}|$.

注意:背面有試題

※選擇題請在答案卡內作答,非選擇題請在答案卷內作答

- 10. Which of the following experimental observations that challenged classical physics around 1900?
- (A) Blackbody radiation.
- (B) Electromagnetism and the origin of magnetic fields, which did transform from one coordinate system to another.
- (C) Line spectra of hydrogen and other atoms.
- (D) The photoelectric effect.
- (E) Compton scattering.
- 11. Consider the quantum system of two identical, spin-1/2 particles moving in a 1D infinite quantum well, in the presence of a uniform magnetic field **B**. Let x_1 and x_2 denote the two particle positions, s_{z1} and s_{z2} the two particle spins in the **B** direction, E_z = Zeeman energy, and dE = energy spacing between the ground and first excited states of one particle in the well at **B** = 0. Which of the following statements are correct?
- (A) When **B** is turned off, the ground state of the two-particle system consists of two particles of opposite spins.
- (B) When **B** is turned on, the ground state of the two-particle system consists of two particles of parallel spins, if $E_z >> dE$.
- (C) At $\mathbf{B} = 0$, the wave function of the two-particle system is of the determinant form $F(x_1, s_{z1})G(x_2, s_{z2}) G(x_1, s_{z1})F(x_2, s_{z2})$.
- (D) The Pauli exclusion principle implies that the wave function of the two-particle system must always vanish if $x_1 = x_2$ and $s_{z1} = s_{z2}$.
- (E) All of the above are true.
- 12. A muon has a half lifetime $\tau_{1/2} = 1.56 \times 10^{-6}$ s and a mass of 200 m_e. This muon is moving with a speed of v = 0.6 c. Please calculate mean lifetime τ_0 , the traveling distance d measured at rest, during mean lifetime τ_0 the relativistic momentum P, the de-Broglie wavelength λ_d , the total energy E and kinetic energy (KE) in the unit of eV, the wavelengths of a photon with the same kinetic energy λ_{KE} or the same momentum P, λ_P
- (A) The mean lifetime and traveling distance measured at rest is $\tau_0 = 3.57 \times 10^{-6} \text{ s}, d = 786 \text{ m}$
- (B) The relativistic momentum is P = 76.66 MeV/c
- (C) The de-Broglie wavelength is $\lambda_d = 1.675 \times 10^{-15} m$
- (D) The total energy and kinetic energies are E = 165.77 MeV, KE = 35.55 MeV
- (E) The wavelengths of photon with the same P or KE: $\lambda_{KE} = 4.8524 \times 10^{-14} \text{ m}$, $\lambda_P = 1.6175 \times 10^{-14} \text{ m}$

※選擇題請在答案卡內作答,非選擇題請在答案卷內作答

- 13. An electron and a positron move side by side, at the same velocity of 0.8c, in the same direction on the x-axis. Finally, these two particles merge together thus annihilate each other, and two photons are generate
- (A) These two photons move in the same direction
- (B) These two photons move in opposite direction with momentum $p_1 = 2.55 \text{ MeV/c}$, $p_2 = 0.51 \text{ MeV/c}$
- (C) These two photons move off with the energy $E_1 = 1.533$ MeV, $E_2 = 170.36$ KeV
- (D) These two photons move in the same direction, with the energy $E_1 = 1.55$ MeV, $E_2 = 0.51$ MeV
- (E) These two photons move off, with the wavelength $\lambda_1 = 8.087 \times 10^{-13} \ m$, $\lambda_2 = 7.278 \times 10^{-12} \ m$
- 14. Which of the following statements are correct?
- (A) If the mean track length of 100 MeV π mesons is 4.88 m up to the point of decay, their mean lifetime is 1.17×10^{-8} s.
- (B) A neutrino of energy 2 GeV collides with an electron. The maximum momentum transfer to the electron is 2.0437 GeV/c.
- (C) A positron-electron pair production can occur in the interaction of a gamma ray with electron, via $\gamma + e^- \rightarrow e^- + e^+ + e^-$. The threshold is 4mc^2 .
- (D) A linear accelerator produces a beam of excited carbon atoms of kinetic energy 120 MeV. Light emitted on de-excitation is viewed at right angles to the beam and has a wavelength λ '. If λ is the wavelength emitted by a stationary atom, the value of $(\lambda' \lambda)/\lambda = 0.0099$. (Take the rest energies of both protons and neutrons to be 10^9 eV).
- (E) All statements are correct.
- 15. An electron is in a box 0.1 nm across, which is the order of magnitude of atomic dimensions. Find its permitted energies.
- (A) 19 eV
- (B) 38 eV
- (C) 76 eV
- (D) 152 eV
- (E) 608 eV

※選擇題請在答案卡內作答,非選擇題請在答案卷內作答

- 16. Which of the following statements are correct?
- (A) Possible values of the principle quantum number n are 1, 2, 3, ..., determining the electron energy
- (B) Possible values of the orbital quantum number l are 0, 1, 2,, n, determining the angular-momentum direction
- (C) The electron spin direction can be described by spin magnetic quantum number m_s , which is independent with other quantum numbers.
- (D) No two electrons in an atom can exist in the same quantum state. They must have a different set of quantum numbers.
- (E) Electrons are fermions and can be described by the antisymmetric wave function, $\psi_F = \frac{1}{\sqrt{2}} [\psi_a(1)\psi_b(2) \psi_a(2)\psi_b(1)]$

(三)非選擇題:共2題,每題10分

- 17. (10%) Derive the total energy of Einstein special relativity is $E^2 = (mc^2)^2 + p^2c^2$
- 18. (10%) A diatomic molecule can rotate about its center of mass (\mathbf{m}_1 , \mathbf{m}_2) as following figure. Known the angular momentum \mathbf{L} is quantized.
- (A) (2%) Determine the total moment of inertia I.
- (B) (8%) Determine the energy of a rotating molecule $E_{\rm J}$.

Electron rest mass	$m_e = 9.1095 \times 10^{-31} \text{ kg}$
Positron rest mass	$m_{e^+} = 9.1095 \times 10^{-31} \text{ kg}$
Proton rest mass	$m_p = 1.6726 \times 10^{-27} \text{ kg}$
Neutron rest mass	$m_n = 1.6750 \times 10^{-27} \text{ kg}$
Light velocity	$c = 2.998 \times 10^8 \ m/s$
Electron charge	$e = 1.602 \times 10^{-19} \text{ Coul}$
Planck's constant	$h = 6.626 \times 10^{-34} J \cdot s = 4.1361 \times 10^{-15} \text{ eV} \cdot s$
Permittivity of free space	$\varepsilon_0 = 8.854 \times 10^{-12} \mathrm{F/}m$