共 6 頁 第 1 頁

※請在答案卷內作答

- 1. Consider the circuit in the figure below. The switch is opened at t = 0. Please answer the questions below (15%):
- (a) Assume all nodal voltages and currents in the circuit has reached their steady states before t < 0. Please **calculate** the voltage across the capacitor, v(0), and the current flowing through the inductor, i(0), at t = 0? Please remember to specify the units for your answers \circ (5%)
- (b)Let $\mathbf{C} = 1/4 \, \mathbf{F}$ and v(t) represent the voltage across the capacitor after t > 0. Is the voltage v(t) an **over-damped** response or an **under-damped** response? Please **explain** your answer clearly \circ (5%)
- (c) If we want to ensure the voltage v(t) across the capacitor has an **over-damped** response after t > 0, what is **the maximum value for the capacitance** C? Please remember to specify the unit for your answer \circ (5%)

共 6 頁 第 2 頁

※請在答案卷內作答

2. Consider the circuit in the figure below. $v_{s1}(t)$ and $v_{s2}(t)$ are both sinusoidal signals given by the equations below:

$$v_{S1}(t) = A_1 \cdot \sin(wt + 10^\circ)$$

$$v_{S2}(t) = A_2 \cdot \sin(wt + 80^\circ)$$

Let the steady-state response of i(t) be given as $i(t) = i_{s1}(t) + i_{s2}(t)$. According to the superposition rule, $i_{s1}(t)$ represents the steady-state response induced by $v_{s1}(t)$, and $i_{s2}(t)$ the steady-state response by $v_{s2}(t)$. Please answer the following questions (15%):

- (a) As the frequency **w increases**, |i_{s1}(t)| will **Increase**? Remain **unchanged**? Or **Decrease**? Please **explain** your answer clearly. (5%)
- (b) As the frequency **w** increases, |i_{s2}(t)| will Increase? Remain unchanged? Or Decrease? Please explain your answer clearly. (5%)
- (c) As the frequency w approaches infinite, the phase angle of i(t) (the overall response) would approach what value? Please explain your answer clearly. (5%)

共 6 頁 第 3 頁

※請在答案卷內作答

- 3. In the following circuit, assume all of the resistors are equal with the same resistance R. Find the equivalent resistance at terminals A and B if
- (a) Terminals C and D are shorted, (5%)
- (b) Terminals E and F are shorted. (5%)

4. Use superposition to find the Thevenin and Norton equivalents with respect to terminals X and Y for the circuit in the following figure. (10%)

共 6 頁 第 4 頁

※請在答案卷內作答

5. In the following figure, assume the operation amplifiers are ideal with infinite input impedance, zero output impedance, and infinite voltage gain. Express v_{out} in terms of v_1 and v_2 . (10%)

共 6 頁 第 5 頁

※請在答案卷內作答

6. A forward converter with a reset winding and an auxiliary voltage source Vr is as shown. Assume the input voltage Vg is constant, and the transistor operates with a duty ratio of D, and the transformer turns ratios are as illustrated.

- (a) Calculate the average value of output voltage Vo. (5%)
- (b) What is the minimum voltage of Vr that causes the transformer magnetizing current to be reset to zero by the end of the switching period? (10%)
- (c) Please explain why the forward converter needs this reset winding. (5%)

台灣聯合大學系統 107 學年度碩士班招生考試試題

類組: 電機類 科目: 電路學(3009)

共 6 頁 第 6 頁

※請在答案卷內作答

- 7. The three-phase and single-phase power system in the figure operate under these conditions:
 - The two systems deliver the same total complex power to the load.
 - The two systems have the same line-to-line voltages.
 - The two systems have the same transmission efficiency.
 - The distance from source to load is the same.
 - The resistance of the power line is proportional to its length divided by the cross-section area of the wire.

Show that the transmission line in a three-phase system requires 25% less copper than the single-phase system. (20%)

