類組:<u>電機類</u> 科目:訊號與系統(300B)

共2頁第1頁

※請在答案卷內作答

 $- \cdot (5\%)$

Given a input x(t) output y(t) relation as $y(t) = x(0.5+t) + e^{-|x(0.5-t)|}$. Determine the system is

(a) Memoryless (b) Time invariant (c) Linear (d) Causal (e) Stable

When the input applied to a continuous LTI system is x(t) in Figure A, the output is y(t) in Figure B. Determine and sketch the output for the input x'(t) shown in Figure C.

Figure A

Figure B

Figure C

三、(15%)

Given an input $x[n] = \left(\frac{1}{3}\right)^n u[n]$, the output of a DT LTI system is $y[n] = \frac{1}{2} \left(\frac{1}{3}\right)^n u[n] + \frac{1}{4} \left(\frac{1}{6}\right)^n u[n]$

- (-) (10%) Find the frequency response (5%) and impulse response (5%) of the system.
- (=) (5%) Find the difference equation relating input and output.

四、(15%)

The RF pulse train x(t) can be defined as the product of a square wave p(t) and a sine wave s(t), as shown in the following figure. Assume that $s(t) = sin(1000 \frac{\pi t}{T})$.

- (-) (5%) Find the Fourier series coefficient of p(t), and
- (=) (10%) Find the Fourier series coefficient of x(t).

注意:背面有試題

類組:電機類 科目:訊號與系統(300B)

共2頁第2頁

※請在答案卷內作答

五、(15%)

(-) (5%) Determine the Fourier representation of the following signal

$$x(t) = 2e^{-t}u(t) - 3e^{-2t}u(t)$$

(=) (10%) Find the time-domain signals corresponding to the following Fourier transform representations:

(5%)
$$X(e^{j\Omega}) = \frac{1}{1-\alpha e^{-j(\Omega + \frac{\pi}{4})}}, |\alpha| < 1$$

(5%)
$$Y(jw) = \frac{1}{2+j(w-3)} + \frac{1}{2+j(w+3)}$$

六、(15%)

Panel (a) shows the overall system for processing a Continuous-Time (CT) signal using a Discrete-Time (DT) system. If $X_c(j\omega)$ and $H(e^{j\omega})$ are as shown in panel (b) and 1/T = 15 kHz, sketch $X_p(j\omega)$, $X(e^{j\omega})$, $Y(e^{j\omega})$, $Y_p(j\omega)$, and $Y_c(j\omega)$.

七、(10%)

A causal LTI system has an impulse response h(t) that satisfies the differential equation

$$\frac{dh(t)}{dt} + 3h(t) = e^{-4t}u(t) + ce^{-5t}u(t),$$

where c is a constant. Moreover, the system output is $(2/15)e^t$ when the input to the system is e^t .

- (-) (3%) Determine the constant c.
- (=) (3%) If the transfer function of this system is H(s), find its poles.
- (Ξ) (4%) Specify the region of convergence of H(s) and tell whether or not the system is stable.

八、(15%)

If the input to an LTI system is u[n], the output is $y[n] = (1/2)^{n-1} u[n]$.

- (-) (6%) If H(z) is the z-transform of the system impulse response, find its pole, zero, and the region of convergence.
- (=) (5%) Find the impulse response h[n] of this LTI system.
- (\equiv) (4%) Is the system stable? Is the system causal?