類組: 電機類 科目: 電路學(3009)

共______ 頁 第_____ 頁

※請在答案卷內作答

- -. Based on the following circuit, determine
 - (-) i_{RI} with node analysis, (10%)
 - (=) i_{RI} with superposition principle, (10%) and
 - (三) a Thévenin Equivalent Circuit looking from port X-Y. (10%)

- =. Based on the Ćuk converter shown as follows,
 - (-) describe its operational principle of power transfer from input to output, (5%)
 - (=) determine the input to output voltage transfer ratio (V_o/V_i) with volt-second balance principle, (10%) and
 - (\equiv) sketch the converter circuit with the two inductors, L_1 and L_2 , coupled on the same core. (5%)

- Ξ . A buck converter with switching period T_s and duty ratio D is shown as follows,
 - (-) determine the minimum inductance for boundary mode operation which is corresponding to the minimum power $P_{o,m}$, (5%) and
 - ($\stackrel{-}{-}$) determine the voltage ripple of output voltage V_o in continuous conduction mode. (5%)

台灣聯合大學系統 105 學年度碩士班招生考試試題

類組: 電機類 科目: 電路學(3009)

共____ 頁 第____ 頁

※請在答案卷內作答

- Eq. A three-phase, 60 Hz, balanced, Y-connected voltage source with $E_{ab} = 480 \angle 0^{\circ}$ volts is applied to a balanced- Δ load with $Z_{\Delta} = 30 \angle 40^{\circ} \Omega$. The line impedance between the source and load is $Z_L = 1 \angle 85^{\circ} \Omega$ for each phase. (20%)
 - (-) Please draw the equivalent circuit of the corresponding single-phase system with the appropriate system parameter data. (4%)
 - ($\stackrel{-}{-}$) Calculate the line current and the Δ -load current. (4%)
 - (\equiv) Find the voltages at the load terminal. (4%)
 - (四) Find the total real and reactive power consumptions at the load side. (4%)
 - (£.) Find the capacitance of the capacitor connected across the Δ -load to improve the overall power factor of the load to 0.95 lagging. (4%)
- 五. Find the capacitor voltage $v_c(t)$ of the given circuit. The excitation is

$$v_s(t) = \begin{cases} -20V, \ t < 0 \\ 20V, \ t \ge 0 \end{cases}$$
 (10%)

- (-) Perform your analysis in the time domain to find $v_c(t)$
- (=) Perform your analysis in the s domain of the Laplace transform and find $v_c(t)$.

- $\dot{\pi}$. The periodic square wave $v_g(t)$ is applied to the circuit. The magnitude of $v_g(t)$ is V_m , and its period $T = 0.0002\pi \ sec.$ (10%)
 - (-) Calculate the first four non-zero terms in the Fourier series of $v_g(t)$.
 - (\perp) Calculate the first four non-zero terms in the Fourier series of $v_o(t)$.

