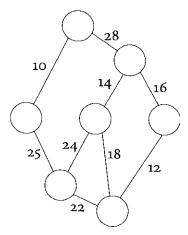
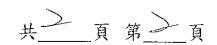
台灣聯合大學系統104學年度碩士班招生考試試題 共2頁第/頁


類組:電機類 科目:資料結構(3002)

※請在答案卷內作答

- (10%) Briefly explain the following terms:
 - (-) Abstract data type
 - (=) Sparse matrix
 - (三) Circular queue
 - (四) Doubly linked list
- = (10%) Use the definition of Big-Oh to prove that $0.01n\log(n)-2000n+5$ is $O(n\log(n))$.
- = (10%) Convert an infix expression (A-B)/C-(D+E)/F-G to a postfix expression by using a stack. Your answer should include step-by-step status of input, stack, and output.
- \pm (10 %) The following figure shows an example of simulating a linked-list (55 \rightarrow 23 \rightarrow 42 \rightarrow 10 \rightarrow 50 \rightarrow 5) by a 2D array (first column stores data part and second column stores next part). Given a polynomial $f(x) = 10x^{100}y^4 + 20x^{10}y^2 + 4x$, show the function by using the representation of 4D array-based linked-list. Suppose the list starts from [2].

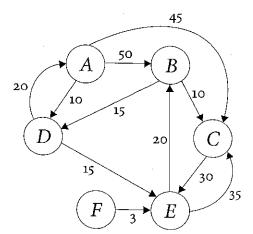
	data	next
[0]	5	-1
[1]	42	5
List start→ [2]	55	4
[3]	50	0
[4] [23	1
[5]	10	3


∴ (10%) Depict each step in Kruskal's and Prim's algorithms, respectively, to find the minimum-cost spanning tree of the following graph.

- 七 (10%) For Sorting,
 - (-) What does it means for a sorting algorithm to be "stable"?
 - (=) Why stable sorting is important?
 - (三) Which of quick sort, merge sort, heap sort, insertion sort, selection sort, and bubble sort is/are stable?

注:背面有試題

台灣聯合大學系統104學年度碩士班招生考試試題


類組:電機類 科目:資料結構(3002)

※請在答案卷內作答

- \wedge (10%) For any nonempty binary tree, T, if n_0 is the number of leaf nodes and n_2 the number of nodes with two children. Prove that $n_0 = n_2 + 1$.
- 九 (10%) Please depict the change of a binary search tree after each of the following step.
 - (-) add 8
- (二) add 11
- (三) add 3
- (四) add 1
- (五) add 9

- (六) add 6

- (七) delete 1 (八) delete 7 (九) delete 11 (十) delete 8
- + (10%) Find the shortest path from vertex A to all destinations.

