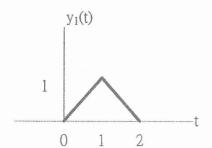
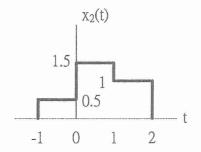

台灣聯合大學系統 103 學年度碩士班招生考試試題 共2 頁第 / 頁


類組: 電機類 科目: 訊號與系統(300B)


※請在答案卷內作答

— `(5%) Consider a linear time-invariant (LTI) system whose response to $x_1(t)$ is the signal $y_1(t)$ as shown below. Determine the output of the LTI system (say, $y_2(t)$) when input is $x_2(t)$ shown below. You must

- (-) (2%) first give an expression of $x_2(t)$ in terms of $x_1(t)$, and then
- $(\underline{})$ (3%) sketch $y_2(t)$.

 \equiv \ (10%) Consider a linear phase LTI system with frequency response H(e^{j\omega}) and group delay \tau(\omega). Suppose $|H(e^{j\pi/2})| = 2$ and $\angle H(e^{j0}) = 0$, and $\tau(\pi/2) = 2$. Determine the answers of the following questions.

- (—) The output of the system when input is $cos(\pi n/2) =$ _____(5%)
- (\equiv) The output of the system when input is $\sin(7\pi n/2 + \pi/4) =$ _____(5%)

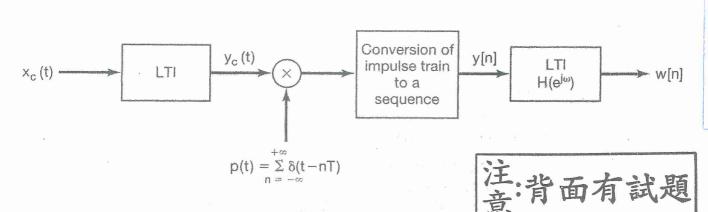
You need to write down your answers only. No partial scores for your computation procedures.

 \equiv (10%) Consider a causal LTI system whose frequency response is given as: $H(e^{jw}) = e^{-jw} \frac{1 - \frac{1}{2}e^{jw}}{1 - \frac{1}{2}e^{-jw}}$.

Determine the answers of the following questions.

$$(-) |H(e^{jw})| = _____(3\%).$$

- (\square) The group delay $\tau(\omega)$ of this filter = _____(3%).
- (\equiv) The output of this filter when the input is $\cos(\frac{\pi}{3}n) =$ ______(4%)


You need to write down your answers only. No partial scores for your computation procedures.

四 · (10%) The following figure shows a system consisting of a continuous-time LTI system followed by a sampler, conversion to a sequence, and an LTI discrete-time system. The continuous-time LTI system is causal and satisfies the linear, constant-coefficient differential equation

$$\frac{dy_c(t)}{dt} + y_c(t) = x_c(t).$$

The input $x_c(t)$ is a unit impulse $\delta(t)$.

- (—) Determine $y_c(t)$. (5%)
- (\Box) Determine the frequency response $H(e^{j\omega})$ and the impulse response h[n] such that $w[n] = \delta(n)$. (5%)

台灣聯合大學系統 103 學年度碩士班招生考試試題 共2頁第2頁

類組:電機類 科目:訊號與系統(300B)

※請在答案卷內作答

 Ξ \ (5%) A signal x[n] has a Fourier transform $X(e^{j\omega})$ that is zero for $(\pi/4) \le |\omega| \le \pi$. Another signal

$$g[n] = x[n] \sum_{k=-\infty}^{\infty} \delta[n-1-4k]$$

is generated. Specify the frequency response $H(e^{i\omega})$ of a lowpass filter that produces x[n] as output when g[n] is the input.

 \nearrow \ (10%) Consider a continuous-time LTI system for which the input x(t) and output y(t) are related by the differential equation

$$\frac{d^2y(t)}{dt^2} + \frac{dy(t)}{dt} - 2y(t) = x(t).$$

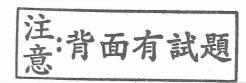
Suppose the system is stable. Determine y(t) as $x(t) = \sum_{n=1}^{\infty} u(t-n)$, where u(t) denotes the unit step function.

 \pm : (10%) Consider a causal and stable LTI system with a real impulse response h(t) and system function H(s). Suppose that H(s) is rational, one of its poles is at -2+j, one of its zeros is at 5-2j, and it has exactly three zeros at infinity. For each of the following statements, determine whether it is true or false. Justify your answers.

- (—) (2%) $h(t)e^{-t}$ is absolutely integrable.
- $(\underline{\hspace{1cm}})$ (2%) There exists a pole at 2 + j.
- (\equiv) (2%) The differential equation relating input x(t) and output y(t) for the system may be written in a form having only real coefficients.
- (\square) (2%) H(s) does not have fewer than five poles.
- (Ξ) (2%) If the input is $e^{5t}\sin(2t)$, the output is $e^{5t}\cos(2t)$.

八、(20%)

(—) (10%) Suppose we are given the following information about a continuous-time periodic signal x(t) with period 3 and Fourier coefficients a_k :


1.
$$a_k = a_{-k}$$
 2. $a_k = a_{k+2}$ 3. $\int_{-1}^{1} x(t)dt = 2$ 4. $\int_{1}^{2} x(t)dt = 1$

Determine x(t) and the corresponding Fourier series representation.

- (\square) (10%) Consider the cascade interconnection of three LTI systems of the impulse responses $\sin(9\pi t)/\pi t$, $\sin(18\pi t)/\pi t$, and $\sin(27\pi t)/\pi t$, respectively. With x(t) obtained in (\square) as the input, determine the Fourier series representation of the corresponding output.
- 九、(20%) Consider a discrete-time system with input x[n] and output y[n] for which

$$-\frac{1}{8}y[n-1] + \frac{1}{4}y[n] + y[n+1] = -2x[n-1] + x[n].$$

- (—) (10%) Suppose all z with Re{z}>5 are in the region of convergence of the system function H(z). Determine H(z) and indicate the region of convergence. What is the impulse response?
- (<u>____</u>) (10%) Draw three block diagrams for the system in the direct form, cascade form, and parallel form, respectively. Note that each block diagram should have the minimum number of delay elements.

