台灣聯合大學系統 103 學年度碩士班招生考試試題 共 / 頁 第 1 頁

類組: <u>電機類</u> 科目: 數位邏輯(300H)

※請在答案卷內作答

考生請注意:

- 本試卷共有 20 題試題。 每題 5 分。
- 你的答案必須如下圖所示由上而下依序寫在答案卷的做答區。
- 只要填寫考題所要求的答案,請勿附加計算過程。

從此處開始寫起
1. (a), (b).
2. (c), (d).
3. 15
4. (1).1 ,(2) 0
5. Z = B+AC'
N N N

台灣聯合大學系統 103 學年度碩士班招生考試試題 共7 頁第2 頁

類組:<u>電機類</u> 科目:<u>數位邏輯(300H)</u>

※請在答案卷內作答

Question 1 [5pt]. Convert (25.375)10 to binary.

Question 2 [5pt]. Determine the base of the number system in each case for the following operations to be correct:

(a)
$$39 + 59 = 91$$

(b)
$$18 * 25 = 378$$

Question 3 [5pt]. For the Boolean function F = (u' + y)(u' + y')(u + x + y'z), use Boolean algebra to simplify the function to a minimum sum of products.

Question 4 [5pt]. Simplify the following Boolean expression to three literals: A'C' + ABC + AC', and find the complement of the simplified result.

Question 5 [5pt]. Which of the following equations are NOT VALID.

(a)
$$(a+b)(b+c)(c+a) = (a'+b')(b'+c')(c'+a')$$

(b)
$$abc + ab'c' + b'cd + bc'd + ad = abc + ab'c' + b'cd + bc'd$$

(c)
$$xy' + x'z + yz' = x'y + xz' + y'z$$

(d)
$$x'y + y'z + z'x = xy' + yz' + zx'$$

Question 6 [5pt]. f(A, B, C, D) = AC + ABC' + BC'D. What is the minimum number of 2-to-1 multiplexor to implement function f?

Question 7 [5pt]. How many NOR gates are needed to implement a minimum two-level, multiple-output NOR-NOR circuit that realizes the following two functions?

$$f_1 = \Sigma m(0, 2, 4, 6, 7, 10, 14)$$
 and $f_2 = \Sigma m(0, 1, 4, 5, 7, 10, 14)$

Question 8 [5pt]. Which of the following transitions are possible hazards for the circuit? Please specify all of them.

(A)
$$0001 \leftrightarrow 1001$$
 (B) $0011 \leftrightarrow 1011$ (C) $0000 \leftrightarrow 1000$

(B)
$$0011 \leftrightarrow 101$$

Question 9 [5pt]. Continue on Question 8, please redesign the circuit with a minimum two-level NOR-NOR circuit that is free of all hazards. How many inputs are needed for the NOR gate that generates output f?

類組:電機類 科目:數位邏輯(300H)

※請在答案卷內作答

Question 10 [5pt]. The function F = CD'E + CDE + A'D'E + A'B'DE' + BCD is implemented in an FPGA with F = A'C' (F_0) + $A'C(F_1)$ + AC (F_3). Please write down the minterm expressions of the three-variable functions $F_0(B,C,D)$, $F_1(B,C,D)$, and $F_2(B,C,D)$.

Question 11 [5pt]. Using four-valued logic, find (A, D, F, H).

Question 12 [5pt]. A two-level, NOR-NOR circuit implements the function.

$$f(a, b, c, d) = (a + d')(b' + c + d)(a' + c' + d')(b' + c' + d).$$

Find all static-0 hazards for (a, b, c, d) = (0, 1, 0, 0) in the circuit.

Question 13 [5pt]. Expand the following function about the variable b.

Question 14 [5pt]. A full adder is implemented using two 4-to-1 MUXes. Connect X and Y to the control inputs of the MUXes, and connect 1, 0, C_{in} , or C_{in} to each data input. Please write the correct inputs for ports (a, b, c, d).

多考用

台灣聯合大學系統 103 學年度碩士班招生考試試題 共 / 頁 第 4 頁

類組:<u>電機類</u> 科目:數位邏輯(300H)

※請在答案卷內作答

Question 15 [5pt]. Implement the following function using only 2-to-1 MUXes:

R = ab'h' + bch' + eg'h + fgh.

Please write the correct inputs for ports (P, Q, R, S, T).

Question 16 [5pt]. Below is an incompletely specified state table with 6 states.

Present	Next	State	Output
State	X=0	1	X=0 1
S0	S2	S4	1 0
S1	S0	S1	1 1
S2	S3	S5	1 1
S3	-(1)	S1	0 0
S4	S2	-(2)	0 0
S5	S2	S3	-(3) 0

How to specify the three don't-care bits denoted as (1), (2) and (3), respectively, in the state table such that the number of states in the state table can be reduced to four?

Question 17 [5pt]. Following shows the stage graph of a circuit with two inputs (denoted as X and Y) and one output (denoted as Z). Then we implement the state graph with three D flip-flops (denoted as Q_2 , Q_1 , and Q_0) and the one-hot state assignment, where $S_0(Q_2Q_1Q_0):001$, $S_1(Q_2Q_1Q_0):010$, and $S_2(Q_2Q_1Q_0):100$. What are the equations for Q_2^+, Q_1^+ , and Q_0^+ , respectively, under this situation?

台灣聯合大學系統 103 學年度碩士班招生考試試題 共_7_頁第5-頁

類組:<u>電機類</u> 科目:數位邏輯(300H)

※請在答案卷內作答

Question 18 [5pt]. Please identify which of the following five circuits, from Circuit(B) to Circuit(F), are equivalent to circuit (A).

Circuit(A)

Present	Next	Next states				
Present	X=0	X=0 X=1				
states			(Z)			
S_{A0}	S _{A0}	S _{A2}	1			
S_{A1}	S _{A3}	S _{A0}	0			
S_{A2}	S _{A2}	S _{A1}	1			
S_{A3}	SAI	S _{A3}	0			

Circuit(D)

(-)			
Present	Next	states	Onton
rresent	X=0	X=1	Output
states			(Z)
S_{D0}	S _{D0}	S _{D1}	1
S_{D1}	S _{D3}	S _{D2}	0
S_{D2}	S _{D2}	S _{D4}	1
S_{D3}	S_{D1}	S _{D3}	0
S_{D4}	S_{D0}	S _{D1}	1

Circuit(B)

Present	Next	states	Outnut	
rresent	X=0 X=1		Output	
states			(Z)	
S_{B0}	S _{B2}	S _{B3}	1	
S _{B1}	SBI	S_{B0}	0	
S_{B2}	S _{B2}	S_{B0}	1	
S_{B3}	S _{B1}	S_{B3}	0	

Circuit(E)

Present	Next	states	Ontout
rresent	X=0	X=1	Output
states			(Z)
S _{E0}	S _{E3}	S _{E4}	1
S _{E1}	S _{E0}	S _{E3}	0
S _{E2}	S _{E4}	S _{E2}	1
S _{E3}	S _{E1}	S _{E0}	0
S _{E4}	S _{E2}	SEI	1

Circuit(C)

Circuit(C)			
Present	Next	states	0 4 4
Fresent	X=0 X=1		Output
states			(Z)
S _{C0}	S _{C3}	S _{C0}	0
S _{C1}	Sci	S _{C2}	1
S _{C2}	S _{C2}	S _{C3}	1
S _{C3}	S _{C0}	Sci	0

Circuit(F)

Present	Next	states	Outnut
Fresent	X=0	X=1	Output
states		,	(Z)
S _{F0}	S _{F4}	S _{F3}	1
S_{F1}	S _{F5}	SFI	0
S _{F2}	S _{F2}	S _{F4}	1
S _{F3}	S_{F1}	S _{F2}	0
S _{F4}	S _{F4}	S _{F5}	1
S _{F5}	SFI	S _{F2}	0

考例

台灣聯合大學系統 103 學年度碩士班招生考試試題 共 7 頁第 6 頁

類組:電機類 科目:數位邏輯(300H)

※請在答案卷內作答

Question 19 [5pt]. Below is a state transition table with 8 states.

	Next S A+B+C	(0.00)	out; Z	out
ABC	X = 0	1	X = 0	1
000	111	011	1	1
010	101	001	0	0
100	001	101	1	0
110	011	111	0	0
111	001	001	0	0
001	100	000	1	0
101	011	111	0	1
011	110	110	1	0

If we implement the state table using 3 T flip-flops as shown in the following figure, what is the input equation of T_{Λ} ?

台灣聯合大學系統 103 學年度碩士班招生考試試題 共 7 頁 第 7 頁

類組: 電機類 科目: 數位邏輯(300H)

※請在答案卷內作答

Question 20 [5pt]. The targeted Mealy machine has one input (X) and one output (Z). The value of output Z is equivalent to the value of input X two clock cycles before. The values of output Z at the first two clock cycles are all zero. Following table shows an exemplary input/output sequence of the targeted mealy machine.

Cycle	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
X	0 ,	1	1_	0	0	0	1	0	1	0	0	1	1	1	0	1
Z	0	0	0	1	1	0	0	0	1	0	1	0	0	1	1	1

Following is the corresponding state table of the targeted Mealy machine with some missing slots. Please list the missing slots (a), (c), and (e), respectively.

in .	Next:	states	Output (Z)			
Present	X=0	X=1	X=0	X=1		
states						
S ₀ (Reset)	S_1	S_2	0	0		
S_1	S_1	(a)	0	0		
S_2	(b)	(c)	0	0		
S_3	S ₁	S ₂	(d)	(e)		
S ₄	S ₃	S ₄	1	1		

