科目: 電力系統(300C)

校系所組:清華大學電機工程學系(甲組)

· (10%) Two impedance loads are connected in parallel to a 2400 volt 3¢ voltage source with load 1:300 kVA, pf=0.8 lagging; load 2: 240 kVA, pf=0.6 lagging. Assume a-phase voltage is $\vec{V}_{an} = 2400/\sqrt{3} \angle 0^{\circ} \vec{V}$ rms and the phase sequence is abc.

- (-) · (5%) Draw a single phase equivalent circuit;
- (二)、 (5%) Find all three source line currents.
- = \(\(\sigma\) (5%) Solve the previous problem in per unit on bases of $V_{base} = 2400/\sqrt{3}$ V, and $S_{base} = 300/3$ kVA. The per unit impedances should be marked in the equivalent circuit.

三、(10%)

- (-) \((5%)\) What are basic assumptions made in power (or load) flow analysis?
- (=) \((5\%)\) What information can be obtained through power flow analysis?
- 四、(10%) For the schematic given in Fig. 1.
 - (-) · (5%)
 - 1. (2.5%) Explain what is inrush current with proper derivations for the resulted flux $\phi(t)$;
 - 2. (2.5%) How to yield the minimum inrush currents, why?
 - (=) \(\(\(\)\) (5%) As the switch SW is turned off, describe the transient voltage problems and causes at $v_2(t)$, and describe the protection remedies.

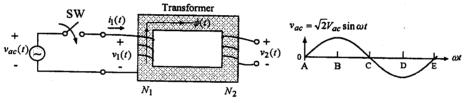


Fig. 1

五、(9%)

- (-) \((5\%) Draw the equivalent circuit of an induction machine.
- (=) \((4\%)\) For the induction machine operated in the generating mode:
 - 1. (2%) label power flows on its equivalent circuit;
 - 2. (2%) describe how to calculate its energy conversion efficiency?
- $\dot{\gamma}$ (6%) A single-phase line possesses the following line constants at 60Hz: z=0.02+j0.2 (Ω/km), $y = 0.08 \times 10^{-4} + j1.25 \times 10^{-4}$ (S/km) . Sketch the magnitude frequency response characteristic impedance $|z_c(\omega)|$. $|z_c(0)| = ? |z_c(\infty)| = ?$

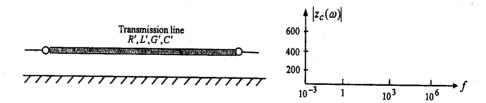
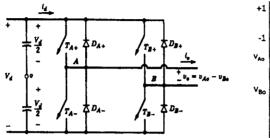


Fig. 2


- + \(\(\) (15%) A generator rated at 400MW, 0.8 power factor, 20 kV has a star-connected stator winding which is earthed at its star point through a resistor of 1.0 ohm. The generator reactances, in per unit on rating, are $X_1=0.2$, $X_2=0.16$, and $X_0=0.14$. The generator feeds a delta star-connected generator transformer rated at 550MVA which steps the voltage up to a 275kV busbar. The transformer star-point is solidly earthed and the transformer reactance is 0.15 p.u. on its rating. The 275kV busbar is connected only to the transformer. Assume that for the transformer X₁=X₂=X₀. Using a base of 500MVA calculate the base current and impedance of each voltage level. Calculate the fault current in amperes for:
 - (-) \(\((5\)\)) a 275kV busbar three-line fault;
 - (=) \(\((5\)\)) a 275kV single-line-to earth fault on the busbar;
 - (三)、 (5%) a 20kV single-line-to-earth fault on the generator terminals.

科目: <u>電力系統(300C)</u>

校系所組:清華大學電機工程學系(甲組)

- (10%) For a H bridge converter as given in Fig. 3, the DC bus voltage Vd=100V. Its PWM carrier is a triangle wave with the frequency of 6Hz.
 - (-) \(\cdot(5\%)\) The desired output voltage is $v_0 = 75$ V (DC). If the uni-polar PWM is used to control this H-bridge converter, please draw the modulation voltage command alongside the PWM carrier, the waveforms of v_{Ao} and v_{Bo} respectively. Note that the duty ratio of these waveforms must be marked clearly.
 - ($\stackrel{\frown}{}$). (5%) The desired output voltage is v_0 (t)= 75 sin(377*t). If the bi-polar PWM is used to control this H bridge converter, please draw the modulation voltage command alongside the PWM carrier.

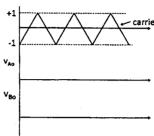
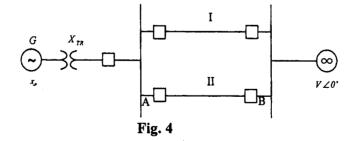



Fig. 3

- t. (5%) Consider three synchronous generators in parallel operating at 60 Hz and having widely different speed regulations, with R_1 =5%, R_2 =10%, and R_3 =16.7%. A load increase of 0.1pu occurs. Compute the initial decrease in frequency and how the change in load is shared by these three machines initially.
- + (5%) In a control area, there are two synchronous generators, 100MW each. The marginal costs (MC) for these two machines can be expressed as follows: $MC_1=1.8+0.01P_1$ (in \$/MWh) and $MC_2=1.5+0.02P_2$ (in \$/MWh). If the area has to supply a total of 150 MW, calculate the area optimum marginal cost and the power supplied by each machine.
- +- \((10%)\) Consider the system of Fig. 4 with two transmission lines. The transient reactance of line I and Line II are X_L and $2X_L$ respectively. The generator is modeled as a constant voltage source $E \angle \delta$ behind the transient reactance X_s . The reactance of the transformer is X_{TR} . The voltage of the infinite bus is $V \angle 0$. Assume a three phase solid-ground fault occurs on line I either at the near side A, or at the far side B, the faulted line is not removed instantaneously.
 - (-) \((6\%)\) Find the expression of electrical power output during the pre-fault stage, the fault-on stage, and the post-fault stage.
 - (二) \ (4%) Use the equal area criterion to identify which fault has a longer critical clearing time.

十二、 (5%)

- (-) \((3\%) Plot the schematic diagram for the differential protection of a single-phase two-winding, 10MVA, 80 KVA/20KVA transformer and illustrate its operation principle.
- (=) (2%) Select suitable current transformers (CT) ratios for the primary site and the secondary site from Table I.

Table 1 Standard CT Ratio

50:5 100:5 150:5 200:5 250:5 300:5 400:5 450:5 500:5 600:5 800:5 900:5 1000:5 1200:5 1500:5 1600:5 200:5 2400:5 2500:5 3000:5 3200:5 4000:5 5000:5 6000:5