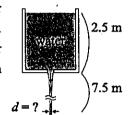
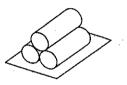
共4頁第一 科目: 普通物理 所別:物理學系碩士班 不分組(一般生)

本科考試禁用計算器

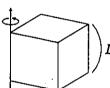

*請在試卷答案卷

Physical Constants:

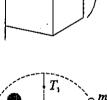
permeability of vacuum: $\mu_0 = 4\pi \times 10^{-7} \text{ Nt/amp}^2$ permittivity of vacuum: $\varepsilon_0 = 8.85 \times 10^{-12} \text{ F/m}$ gravitational acceleration: $g = 9.8 \text{ m/sec}^2$


Part I 單選題: (每題 5 分, 共 50 分, 答錯不倒扣。)

1. Consider a cylindrical tank filled with water with 2.5-m depth. The water emerges from a small hole at the center of the bottom, as shown in the figure. The diameter of the hole is 1 mm. The cross-section area of the vertical water stream decreases as it falls. Find the diameter of the water stream at the position 7.5 m from the hole.

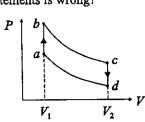

- (A) 0.23 mm
- (B) 0.36 mm
- (C) 0.50 mm

- (D) 0.58 mm
- (E) 0.71 mm
- 2. Three identical cylinders are stacked on a table as shown in the figure. Find the minimum value of the coefficient of static friction between the cylinder and the table surface.


- (A) ₁ $3\sqrt{3}$

- 3. A cube rotates around one of its edges as shown in the figure. The mass of the cube is M and the side length is L. Find the moment of inertia of the cube about that axis.

- (A) $(1/6) ML^2$
- (B) $(1/3) ML^2$
- (C) $(1/2) ML^2$

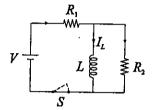

- (D) $(2/3) ML^2$
- (E) $(5/6) ML^2$
- 4. A man plays a Yo-Yo ball as shown in the figure. The mass of the ball is m, and the length of the string is L. The ball moves in a circle along a vertical plane. What is the difference of the string tension at the lowest point (T_2) and the highest point (T_1) ?

- $(A) T_2 T_1 = 2mg$
- (B) $T_2 T_1 = 3mg$
- (C) $T_2 T_1 = 4mg$

- (D) $T_2 T_1 = 5mg$
- (E) $T_2 T_1 = 6mg$

- 5. A parallel plate capacitor is composed of two circular plates of radius r = 40 mm separate by a distance d = 1 mm. The capacitor is charged that the potential difference between the plates changes at 104 volt/sec. Find the displacement current in the capacitor?
 - (A) 3.0×10^{-7} A
- (B) 3.5×10^{-7} A (C) 4.0×10^{-7} A
- (D) 4.5×10^{-7} A (E) 5.0×10^{-7} A
- 6. Consider a thermodynamic engine based on ideal gas. The operating cycle is shown in the pressure(P)-volume(V) diagram. The $a \rightarrow b$ and $c \rightarrow d$ are isochoric (constant volume) processes, and the $b\rightarrow c$ and $d\rightarrow a$ are adiabatic processes. Which one of the following statements is wrong?
 - (A) During $a \rightarrow b$, the heat flows from the engine to the surrounding.
 - (B) During $b \rightarrow c$, the temperature of the gas decreases.
 - (C) During $c \rightarrow d$, the internal energy of the gas decreases.
 - (D) During $d\rightarrow a$, the internal energy of the gas increases.
 - (E) During $d \rightarrow a$, the engine does negative work on the surrounding.

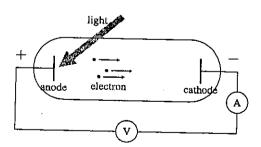
所別:物理學系碩士班 不分組(一般生) 科目:普通物理 共4頁第2頁 本科考試禁用計算器

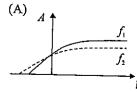

*請在試卷答案卷(卡)內作答

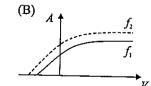
7. Continued from the last question, find the efficiency of this engine.

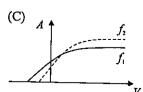
(Note: adiabatic process of ideal gas: PV^{γ} = constant, $\gamma = C_p/C_v$, C_v : molar specific heat at constant volume, C_p: molar specific heat at constant pressure.)

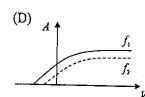
(A) (B) (C) (D) (E)
$$1 - \left(\frac{V_1}{V_1 + V_2}\right)^{\gamma - 1}$$
 (D) (E) $1 - \left(\frac{V_1}{V_2}\right)^{\gamma - 1}$ (D) $1 - \left(\frac{V_1}{V_2}\right)^{\gamma - 1}$ (D) $1 - \left(\frac{V_1}{V_2}\right)^{\gamma - 1}$

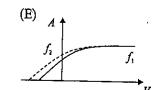

8. As shown in the right figure, a circuit is composed of a DC voltage source (V), two resistors (R_1 and R_2), one inductor (L), and a switch (S). Initially S is closed and the circuit is at steady condition, then S is opened at time t =0. Find the current through the inductor as a function of time at t > 0.

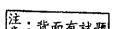

(A)
$$I_L(t) = \frac{V}{R_1 + R_2} \exp\left(-\frac{R_2}{L}t\right) \qquad I_L(t) = \frac{V}{R_1} \exp\left(-\frac{R_2}{L}t\right)$$


$$(C) I_L(t) = \frac{V}{R_2} \exp\left(-\frac{R_1}{L}t\right) \qquad (D) I_L(t) = \frac{V}{R_1 + R_2} \exp\left(-\frac{R_1}{L}t\right) \qquad (E) I_L(t) = \frac{V}{R_1} \exp\left(-\frac{R_1 + R_2}{L}t\right)$$


- 9. A standing light wave is composed by two counter-propagating plane waves. The electric field is written as $\mathbf{E}_{\text{standing}}(\mathbf{r}, t) = \mathbf{E}_1(\mathbf{r}, t) + \mathbf{E}_2(\mathbf{r}, t)$, where $\mathbf{E}_1(\mathbf{r}, t) = E_0 \cos(kz - \omega t) \mathbf{e}_x$ and $\mathbf{E}_2(\mathbf{r}, t) = E_0$ $\cos(-kz - \omega t)$ e_x. Find the magnetic field of the standing wave.
 - (A) $\mathbf{B}(\mathbf{r}, t) = (2E_0/c) \cos(kz) \cos(\omega t) \mathbf{e}_z$
- (B) $\mathbf{B}(\mathbf{r}, t) = (2E_0/c)\cos(kz)\cos(\omega t)\mathbf{e}_{\nu}$
- (C) $B(\mathbf{r}, t) = (2E_0/c) \sin(kz) \cos(\omega t) \mathbf{e}_y$
- (D) $\mathbf{B}(\mathbf{r}, t) = (2E_0/c) \cos(kz) \sin(\omega t) \mathbf{e}_{\nu}$
- (E) $\mathbf{B}(\mathbf{r}, t) = (2E_0/c)\sin(kz)\sin(\omega t)\mathbf{e}_v$
- 10. The setup of photoelectric effect experiment is shown in the following figure. The anode is irradiated by light with intensity I and frequency f. The electric potential between the anode and cathode is controlled by a variable power supply with voltage V. The resulted current A is measured by an ampere meter.

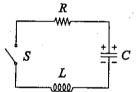



If we use two difference light sources with the same intensity I and different frequencies f_1 and f_2 , where $f_1 < f_2$, which one of the following current-voltage (A-V) diagrams is correct?



所別:物理學系碩士班 不分組(一般生) 科目:普通物理 共 4 頁 第 3 頁

本科考試禁用計算器


*請在試卷答案卷(卡)內作答

Part II 多選題: (每題 5 分, 共 50 分, 每一選項單獨計分, 答錯不倒扣。)

- 11. Consider the following optical phenomena, which ones of them can be deduced from Fermat's principle of least time?
 - (A) single slit diffraction
 - (B) double slit interference
 - (C) reflection law (The angle of incidence is equal to the angle of reflection.)
 - (D) refraction law (Snell's law)
 - (E) zero reflection at Brewster's angle
- 12. Continued from the last question, which ones of them can be deduced from Maxwell's theory of electromagnetism?
 - (A) single slit diffraction
 - (B) double slit interference
 - (C) reflection law (The angle of incidence is equal to the angle of reflection.)
 - (D) refraction law (Snell's law)
 - (E) zero reflection at Brewster's angle
- 13. Which ones of the following statements are the postulates of special relativity?
 - (A) No object can moves with a speed higher than the speed of light in vacuum.
 - (B) The speed of light in vacuum is the same in all inertial reference frames.
 - (C) $E = mc^2$, where E is energy, m is mass, and c is speed of light in vacuum.
 - (D) The space-time transformation obeys the Lorentz transformation.
 - (E) All physical laws have the same form in all inertial reference frames.
- 14. In quantum mechanics, every dynamic variable is represented as an operator. Consider the position representation, which ones of the following statements are correct?
 - (A) the momentum operator along x-axis is $p_x = m (\partial x/\partial t)$
 - (B) the momentum operator along x-axis is $p_x = -im (\partial x/\partial t)$
 - (C) the momentum operator along x-axis is $p_x = -i\hbar (\partial/\partial x)$
 - (D) the angular momentum operator is $L = -i\hbar (r \times \nabla)$
 - (E) the angular momentum operator is $L = i\hbar (\nabla \times \mathbf{r})$
- 15. Which ones of the following requirements are sufficient conditions for a ferromagnetic material?
 - (A) The atoms of the material must have permanent magnetic dipole moment.
 - (B) The atoms of the material must have no permanent magnetic dipole moment.
 - (C) The atoms may or may not have permanent magnetic dipole moment.
 - (D) There is no interaction between the atomic dipoles.
 - (E) There are strong interactions between the atomic dipoles.
- 16. According to Planck's theory, which ones of the following quantities must be quantized to explain the spectrum of blackbody radiation?
 - (A) spin of electrons
 - (B) energy of electrons
 - (C) momentum of electromagnetic waves
 - (D) energy of electromagnetic waves
 - (E) energy transfer between electromagnetic waves and electric oscillators

- 17. Consider the electromagnetic Poynting vector (S = E × H), which ones of the following statements are correct?
 - (A) Poynting vector is the energy flux density of electromagnetic field.
 - (B) Poynting vector is the momentum flux density of electromagnetic field.
 - (C) Poynting vector is proportional to the momentum density of electromagnetic field.
 - (D) Poynting vector is proportional to the angular momentum density of electromagnetic field.
 - (E) Poynting vector is proportional to the optical pressure of an electromagnetic wave.
- 18. Consider the entropy of an ideal gas system, which ones of the following processes result in the increase of its entropy?
 - (A) Quasi-static isothermal expansion from volume V to volume 2V.
 - (B) Quasi-static isothermal compression from e V to volume (1/2)V.
 - (C) Adiabatic free expansion from volume V to volume 2V.
 - (D) Quasi-static adiabatic expansion from volume V to volume 2V.
 - (E) Quasi-static adiabatic compression from volume V to volume (1/2)V.
- 19. Consider a typical LRC circuit shown in the figure. The capacitor (C) is initially charged and the switch (S) is closed at time t = 0. Then the current oscillates in the circuit. Which ones of the following statement are correct?

- (A) If the inductance is increased, the oscillation frequency will be increased.
- (B) If the inductance is increased, the oscillation frequency will be decreased.
- (C) If the resistance is increased, the damping of the oscillation is increased.
- (D) If the resistance is increased, the damping of the oscillation is decreased.
- (E) If the inductance is increased, the damping of the oscillation is decreased.
- 20. Consider the Schrödinger equation, which ones of the following descriptions of the wave function $\Psi(x, t)$ are correct?
 - (A) The probability of finding the particle at position x and time t is proportional to $|\Psi(x, t)|^2$.
 - (B) The mass distribution of a particle at position x and time t is proportional to $|\Psi(x,t)|^2$.
 - (C) The mass distribution of a particle at position x and time t is proportional to $|\Psi(x, t)|$.
 - (D) If Ψ_1 and Ψ_2 are two possible wave functions to describe the state of a particle. Then $\Psi_3 = (2/5) \Psi_1 + (3/5) \Psi_2$ may be another state of the particle
 - (E) If Ψ_1 and Ψ_2 are two possible wave functions to describe the state of a particle. Then $\Psi_3 = (3/5) \Psi_1 + (4/5) \Psi_2$ may be another state of the particle

注:背面有試題